miércoles, 4 de enero de 2012

CELULA. PERCY ZAPATA MENDO.

Célula

1 INTRODUCCIÓN

Célula, unidad básica de la vida. La célula es la estructura más pequeña capaz de realizar por sí misma las tres funciones vitales: nutrición, relación y reproducción. Todos los organismos vivos están formados por células. Algunos organismos microscópicos, como las bacterias y los protozoos, son unicelulares, lo que significa que están formados por una sola célula. Las plantas, los animales y los hongos son organismos pluricelulares, es decir, están formados por numerosas células que actúan de forma coordinada. La célula representa un diseño extraordinario y eficaz con independencia de si es la única célula que forma una bacteria o si es una de los billones de células que componen el cuerpo humano. La célula lleva a cabo miles de reacciones bioquímicas cada minuto y origina células nuevas que perpetúan la vida.

El tamaño de las células es muy variable. La célula más pequeña, un tipo de bacteria denominada micoplasma, mide menos de una micra de diámetro (10.000 micoplasmas puestos en fila tienen el mismo diámetro que un cabello humano). Entre las células de mayor tamaño destacan las células nerviosas que descienden por el cuello de una jirafa, que pueden alcanzar más de 3 m de longitud. Las células humanas presentan también una amplia variedad de tamaños, desde los pequeños glóbulos rojos (hematíes) que miden 0,00076 mm hasta las células hepáticas que pueden alcanzar un tamaño diez veces mayor. Aproximadamente 10.000 células humanas de tamaño medio tienen el mismo tamaño que la cabeza de un alfiler.

Además de estas diferencias de tamaño, las células presentan una amplia variedad de formas. Algunas, como la bacteria Escherichia coli, tienen forma de bastón. El paramecio, un tipo de protozoo, tiene forma de zapatilla y la ameba, otro protozoo, tiene una forma irregular que cambia conforme se mueve. Las células de las plantas tienen, por lo general, forma poligonal. En los seres humanos, las células de las capas más superficiales de la piel son planas, mientras que las células musculares son largas y delgadas. Algunas células nerviosas, con sus prolongaciones delgadas en forma de tentáculos, recuerdan a un pulpo.

En los organismos pluricelulares la forma de la célula está adaptada, por lo general, a su función. Por ejemplo, las células planas de la piel forman una capa compacta que protege a los tejidos subyacentes de la invasión de bacterias. Las células musculares, delgadas y largas, se contraen rápidamente para mover los huesos. Las numerosas extensiones de una célula nerviosa le permiten conectar con otras células nerviosas para enviar y recibir mensajes con rapidez y eficacia.

Toda célula es, en sí misma, un modelo de independencia. Igual que una ciudad amurallada en miniatura que estuviese permanentemente en hora punta, la célula debe soportar constantemente el tráfico, transportando moléculas esenciales de un lugar a otro con el fin de mantener las funciones vitales. Sin embargo, a pesar de su individualidad, las células poseen además una capacidad notable para unirse, comunicarse y coordinarse con otras células. Por ejemplo, el cuerpo humano está formado por unos 60 billones de células. Docenas de distintos tipos de células están organizadas en grupos especializados denominados tejidos. Los tendones y los huesos, por ejemplo, están formados por tejido conjuntivo, mientras que la piel y las membranas mucosas están formadas por tejido epitelial. Los distintos tipos de tejidos se unen para formar órganos, que son estructuras especializadas en funciones específicas. Algunos ejemplos de estos órganos son el corazón, el estómago o el cerebro. Los órganos, a su vez, se constituyen en sistemas como el sistema nervioso, el digestivo o el circulatorio. Todos estos sistemas de órganos se unen para formar el cuerpo humano.

Los componentes de las células son moléculas, estructuras sin vida propia formadas por la unión de átomos. Las moléculas de pequeño tamaño sirven como piezas elementales que se combinan para formar moléculas de mayor tamaño. Las proteínas, los ácidos nucleicos, los carbohidratos o hidratos de carbono y los lípidos (grasas y aceites) son los cuatro tipos principales de moléculas que forman la estructura celular y participan en las funciones celulares. Por ejemplo, una disposición muy organizada de lípidos, proteínas y compuestos de proteínas y azúcares, forman la membrana plasmática, o límite externo, de ciertas células. Los orgánulos, compartimentos rodeados por una membrana, presentes en el interior de las células, están formados principalmente por proteínas. Las reacciones bioquímicas en las células están dirigidas por enzimas, proteínas especializadas que aceleran las reacciones químicas. El ácido desoxirribonucleico (ADN) contiene la información hereditaria de las células y otro ácido nucleico, el ácido ribonucleico (ARN), actúa junto al ADN para producir las miles de proteínas que la célula necesita.

2 ESTRUCTURA CELULAR

Las células pertenecen a una de estas dos categorías: procariota o eucariota. En las células procariotas, propias de bacterias y arquebacterias, todos los componentes, incluyendo el ADN, se disponen libremente en el interior de la célula, en un compartimento único. Las células eucariotas que forman las plantas, los animales, los hongos y las restantes formas de vida, contienen numerosos compartimentos, u orgánulos, en su interior. El ADN de las células eucariotas está contenido dentro de un orgánulo especial denominado núcleo, que funciona como centro de mando de la célula y biblioteca donde se almacena la información. El término procariota procede de palabras griegas que significan ‘antes del núcleo’ o ‘prenúcleo’, mientras que eucariota significa ‘núcleo verdadero’.

2.1 Células procariotas

Las células procariotas están entre las de menor tamaño de todas las células; por lo general miden entre 1 y 10 µ, aunque algunas solo alcanzan menos de una micra de diámetro. Alrededor de 100 células procariotas típicas alineadas en fila tienen el mismo grosor que la página de un libro. Estas células, que pueden tener forma de bastón, esfera o espiral, están rodeadas por una pared celular protectora. Igual que la mayoría de las células, las células procariotas viven en un medio acuoso. La presencia de poros diminutos en la pared celular permite que el agua y las sustancias disueltas en ella, como el oxígeno, entren en la célula. Esos poros permiten también la salida de los desechos.

Apoyada en la superficie interna de la pared de la célula procariota se encuentra una membrana denominada membrana plasmática. Esta membrana, compuesta por una doble capa de moléculas intercaladas de lípidos flexibles y proteínas resistentes, está dotada de flexibilidad y resistencia. A diferencia de la pared celular, cuyos poros abiertos permiten el paso no regulado de materiales dentro y fuera de la célula, la membrana plasmática presenta una permeabilidad selectiva, permitiendo solo el paso de determinadas sustancias. De este modo, la membrana plasmática separa activamente el contenido de la célula de los fluidos que la rodean.

Mientras que las moléculas de pequeño tamaño como el agua, el oxígeno y el dióxido de carbono se difunden libremente a través de la membrana plasmática, el paso de numerosas moléculas de mayor tamaño, como aminoácidos (componentes básicos que forman las proteínas) e hidratos de carbono, está cuidadosamente regulado. Esta tarea es desempeñada por proteínas de transporte especializadas que abarcan todo el espesor de la membrana plasmática, formando un intrincado sistema de bombas y canales que permite el paso de estas sustancias. Algunas sustancias presentes en el fluido que rodea la célula pueden entrar solo si se unen y son acompañadas por proteínas de transporte específicas. De este modo, la célula controla con precisión la composición de su medio interno.

La membrana plasmática rodea al citoplasma, el semifluido presente en el interior de la célula. El citoplasma está formado por un 65% de agua aproximadamente y contiene hasta 1.000 millones de moléculas por célula, un copioso almacén que comprende enzimas y nutrientes disueltos, como carbohidratos y aminoácidos. El agua proporciona un medio favorable para las miles de reacciones bioquímicas que tienen lugar en la célula.

En el interior del citoplasma de todas las células procariotas se localiza el ADN, una molécula compleja con forma de doble hélice cerrada. El ADN tiene aproximadamente 1.000 veces la longitud de la célula y, para adaptarse a su interior, se enrolla y pliega repetidamente hasta formar una estructura compacta denominada cromosoma. El cromosoma de la célula procariota es circular y está localizado en una región de la célula llamada nucleoide. Con frecuencia existen en el citoplasma moléculas cíclicas de ADN de menor tamaño denominadas plásmidos. El ADN está formado por unidades denominadas genes, de forma similar a un tren largo formado por vagones independientes. El ADN contiene varios cientos o incluso miles de genes, dependiendo de la especie. Por lo general, un gen contiene instrucciones codificadas para la síntesis de toda o parte de una proteína específica.

También están inmersos en el citoplasma los únicos orgánulos presentes en las células procariotas: pequeños orgánulos sin membrana denominados ribosomas que constituyen las fábricas de proteínas de la célula. Siguiendo las instrucciones codificadas en el ADN, los ribosomas producen cientos de proteínas por minuto aportando a la célula las enzimas necesarias, los recambios de las proteínas de transporte consumidas y otras proteínas indispensables.

Aunque su composición es relativamente sencilla, las células procariotas desarrollan una actividad extremadamente compleja. Tienen una variedad de reacciones bioquímicas más amplia que la de sus parientes de mayor tamaño: las células eucariotas. La extraordinaria diversidad bioquímica de las células procariotas queda reflejada en los distintos modos de vida de las arquebacterias y las bacterias, cuyos hábitats comprenden desde el hielo polar hasta los desiertos y las grietas hidrotermales.

2.2 Células animales eucariotas

Las células eucariotas tienen, por lo general, un tamaño diez veces mayor que las procariotas. No tienen pared celular y la membrana plasmática forma, en las células animales, el límite externo de la célula. Con un diseño similar al de la membrana plasmática de las células procariotas, esta membrana separa la célula de su ambiente exterior y regula el paso de sustancias a través de ella.

El citoplasma de la célula eucariota es similar al de la célula procariota excepto porque las células eucariotas alojan un núcleo y numerosos orgánulos distintos delimitados por una membrana. Igual que las habitaciones separadas de una vivienda, estos orgánulos permiten la separación de funciones especializadas. Por ejemplo, la síntesis de proteínas y lípidos tiene lugar en orgánulos independientes donde se localizan las enzimas especializadas para cada función.

El núcleo es el orgánulo de mayor tamaño en la célula animal. Contiene numerosos filamentos de ADN cuya longitud es bastante mayor que el diámetro de la célula. A diferencia del ADN procariota circular, el ADN eucariota está contenido en el núcleo en forma de secciones largas, denominadas cromatina, que se enrollan alrededor de unas proteínas especiales llamadas histonas. Cuando la célula comienza a dividirse, cada filamento de ADN se pliega varias veces sobre sí mismo, dando lugar a un cromosoma filiforme.

El núcleo está rodeado por una doble membrana que protege al ADN de las reacciones químicas potencialmente nocivas que tienen lugar en el citoplasma. Las macromoléculas circulan entre el citoplasma y el núcleo a través de los poros nucleares, orificios presentes en la membrana nuclear. Los poros se abren y se cierran para regular selectivamente el transporte de moléculas. Este transporte se realiza mediante uniones a receptores específicos.

Unido a la membrana nuclear externa se encuentra un sistema de membranas denominado retículo endoplasmático. Este orgánulo se dispone en el citoplasma formando una red de sacos aplanados y túbulos ramificados e interconectados entre sí. El retículo endoplasmático adopta dos formas: rugoso y liso. El retículo endoplasmático rugoso (RER) recibe este adjetivo porque, al observarlo al microscopio, presenta numerosas protuberancias. Estas prominencias son, en realidad, miles de ribosomas que se encuentran unidos a la superficie de la membrana. Los ribosomas tienen la misma función en las células eucariotas que en las procariotas pero su estructura es ligeramente diferente. Las funciones del RER comprenden la síntesis de proteínas, cuyo destino es la membrana, otros orgánulos celulares o el exterior de la célula; el inicio de la glucosilación de las proteínas (adición de un azúcar), que tiene lugar en el espacio interno del retículo o lumen; y la participación en procesos de detoxificación de la célula.

El retículo endoplasmático rugoso está muy desarrollado en las células que producen muchas proteínas para exportar, como es el caso de los glóbulos blancos del sistema inmunológico, que producen y secretan anticuerpos. Algunos ribosomas que fabrican proteínas no están unidos al retículo endoplásmatico. Estos ribosomas libres están dispersos en el citoplasma y, por lo general, sintetizan proteínas (muchas de ellas enzimas) que permanecen en la célula.

La segunda forma de retículo endoplasmático, el retículo endoplasmático liso (REL), carece de ribosomas y tiene una superficie uniforme. En el interior de los canales que componen el retículo endoplasmático liso se encuentran las enzimas necesarias para la síntesis de lípidos. El retículo endoplasmático liso es abundante en las células hepáticas, donde además depura sustancias tóxicas como el alcohol, drogas y otros venenos.

Las proteínas son transportadas desde los ribosomas del retículo endoplasmático y los ribosomas libres hasta el aparato de Golgi, un orgánulo que recuerda a globos desinflados apilados y que contiene enzimas que completan el procesamiento de las proteínas. Estas enzimas añaden, por ejemplo, átomos de azufre y de fósforo en ciertas regiones de las proteínas, o eliminan diminutos fragmentos de los extremos de las mismas. Después, la proteína completa abandona el aparato de Golgi para alcanzar su destino definitivo dentro o fuera de la célula. Durante su ensamblado en el ribosoma, cada proteína adquiere un grupo de 4 a 100 aminoácidos denominado “señal”. La “señal” actúa como una etiqueta de transporte molecular que dirige la proteína hasta su localización adecuada.

Los lisosomas son orgánulos pequeños y a menudo esféricos que actúan como centro de reciclado y vertedero de la célula. Las enzimas digestivas concentradas en el lisosoma descomponen los orgánulos inservibles y transportan sus elementos básicos al citoplasma donde son aprovechados para construir orgánulos nuevos. Los lisosomas también descomponen y reciclan proteínas, lípidos y otras moléculas.

Los peroxisomas son pequeñas vesículas membranosas que contienen unas enzimas, llamadas oxidasas, que participan en reacciones metabólicas de oxidación. Las vacuolas son también vesículas membranosas formadas, fundamentalmente, por agua. Actúan también almacenando sustancias, tanto nutrientes como productos de desecho.

Las mitocondrias son unos de los orgánulos más conspicuos presentes en el citoplasma y constituyen las centrales de energía de la célula. Observadas al microscopio, presentan una estructura característica: las mitocondrias tienen forma alargada u oval, de varias micras de longitud, y están envueltas por dos membranas: una externa, que delimita el espacio intermembranoso y otra interna, muy replegada, que engloba la matriz mitocondrial. Dentro de estos orgánulos alargados se realizan las reacciones específicas de la respiración aerobia o celular, un proceso que consume oxígeno y produce dióxido de carbono y tiene como finalidad la obtención de energía que pueda ser utilizada por la célula. Las enzimas presentes en las mitocondrias convierten la glucosa y otros nutrientes en trifosfato de adenosina (ATP). Esta molécula sirve como fuente de energía para incontables procesos celulares, como el transporte de sustancias a través de la membrana plasmática, la síntesis y transporte de proteínas y lípidos, el reciclado de moléculas y orgánulos y la división celular. Las células musculares y hepáticas son especialmente activas y requieren docenas y en ocasiones hasta un centenar de mitocondrias por célula para satisfacer sus necesidades energéticas. Las mitocondrias son unos orgánulos peculiares ya que contienen su propio ADN, en forma de cromosoma circular de tipo procariota, tienen sus propios ribosomas, que se asemejan también a los ribosomas procariotas, y se dividen con independencia de la célula.

A diferencia de la célula procariota diminuta, la célula eucariota de mayor tamaño necesita un soporte estructural. El citoesqueleto constituye una red dinámica de microtúbulos, filamentos y fibras de proteínas que se entrecruzan en el citoplasma, anclan los orgánulos en posición y son responsables de la forma y estructura de la célula. Numerosos componentes del citoesqueleto son ensamblados y desensamblados por la célula según sus necesidades. Por ejemplo, durante la división celular se forma una estructura especial para desplazar a los cromosomas que recibe el nombre de huso acromático. Después de la división, el huso se desmonta porque no es necesario. Algunos componentes del citoesqueleto actúan como vías microscópicas a lo largo de las cuales se desplazan proteínas y otras moléculas como si fueran trenes en miniatura. Hallazgos de investigaciones recientes indican que el citoesqueleto podría ser también una estructura de comunicación mecánica que colabora con el núcleo para ayudarle a organizar los fenómenos que tienen lugar en la célula.

2.3 Células eucariotas vegetales

Las células vegetales tienen todos los orgánulos presentes en las células animales y poseen además algunos adicionales, como los cloroplastos, una vacuola central y una pared celular. Los cloroplastos tienen forma alargada y su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, que no se repliegan formando crestas, los cloroplastos tienen numerosos sacos internos aplanados en forma de disco (denominados tilacoides), interconectados entre sí, que están formados por una membrana que encierra el pigmento verde llamado clorofila. En los cloroplastos tiene lugar la fotosíntesis, un proceso que utiliza la energía solar para producir moléculas ricas en energía (ATP) y moléculas reductoras (NADPH) que se utilizan para sintetizar hidratos de carbono a partir de dióxido de carbono, liberando oxígeno. La fotosíntesis es un proceso vital ya que constituye una fuente importante del oxígeno fotosintético que necesitan la mayor parte de los organismos, incluidas las plantas, para vivir. Al igual que las mitocondrias, los cloroplastos también poseen un cromosoma circular y ribosomas de tipo procariota, que se encargan de sintetizar las proteínas que estos orgánulos necesitan.

La vacuola central de las células vegetales es una bolsa membranosa que, por lo general, ocupa la mayor parte del citoplasma de la célula y desplaza los orgánulos hacia la periferia. Desempeña diversas funciones, como la regulación osmótica, la digestión de macromoléculas y el almacenamiento de nutrientes y sustancias de desecho. La vacuola central almacena agua, sales, carbohidratos, proteínas y otros nutrientes. Además, almacena los pigmentos azul, rojo y morado que dan color a ciertas flores y contiene también desechos que poseen sabor amargo y alejan a los insectos de la planta.

Las células vegetales poseen una pared celular rígida y resistente que rodea y protege la membrana plasmática. Sus poros permiten el paso de materiales dentro y fuera de la célula. La resistencia de la pared permite también que la célula absorba agua en la vacuola central y aumente de tamaño sin estallar. La presión resultante en las células aporta rigidez y soporte a los tallos, hojas y flores de las plantas. Sin una presión de agua suficiente, las células se colapsan y la planta se marchita.

3 FUNCIONES CELULARES

Para mantenerse vivas, las células tienen que ser capaces de realizar distintas funciones. Algunas células necesitan moverse y la mayoría deben de ser capaces también de dividirse. Todas las células deben mantener una concentración adecuada de sustancias químicas en su citoplasma, deben ingerir alimento y utilizarlo para fabricar energía, reciclar moléculas, eliminar desechos y construir proteínas. Las células también deben tener capacidad para responder a los cambios que suceden en el medio externo.

3.1 Movimiento

Muchos organismos unicelulares nadan, se deslizan o reptan en busca de alimento o para escapar de sus enemigos. Los organismos acuáticos se desplazan a menudo mediante un flagelo, una prolongación delgada formada por microtúbulos y proteínas accesorias. Por ejemplo, numerosas bacterias tienen uno, dos o varios flagelos que rotan como hélices propulsoras para desplazar al organismo. Algunos organismos eucariotas unicelulares, como la euglena, tienen también un flagelo, pero más largo y grueso que el flagelo procariota. El flagelo eucariota funciona mediante ondulaciones como un látigo. En animales superiores, el espermatozoide utiliza un flagelo para alcanzar el óvulo femenino y fecundarlo.

El movimiento de los organismos eucariotas se consigue también mediante cilios, estructuras móviles en forma de pelos, numerosos y cortos, formados también por microtúbulos y proteínas. Por lo general, miles de cilios se extienden a través de la membrana plasmática y cubren la superficie de la célula, dándole un aspecto piloso denso. Al batir sus cilios como si fueran remos, un organismo como el paramecio se propulsa a través de su medio acuoso. En las células que no se mueven, los cilios desempeñan otras funciones. Por ejemplo, en el aparato respiratorio del ser humano millones de células ciliadas impiden que el polvo, el humo y los microorganismos inhalados entren en los pulmones al barrerlos sobre una corriente de moco hacia la garganta, desde donde son deglutidos.

Los flagelos y cilios eucariotas constan de una parte que sobresale fuera de la superficie celular y otra situada debajo de la membrana. La primera está recubierta por la membrana plasmática y contiene un haz de microtúbulos, denominado axonema, capaz de desarrollar movimientos. La parte situada debajo de la membrana se denomina cuerpo basal y consiste en una pequeña estructura proteica, similar a los centriolos, a partir de la cual crece el axonema. Los cuerpos basales ayudan también a anclar los flagelos y los cilios.

Sin embargo, otras células eucariotas, como las amebas y los glóbulos blancos sanguíneos, se desplazan con un movimiento ameboide o de arrastre. Deforman su citoplasma para formar seudópodos temporales o falsos pies. Después, arrastran el extremo de avance del citoplasma hasta los seudópodos. Una célula que se desplaza con movimiento ameboide perdería una carrera con una euglena o con un paramecio. Sin embargo, aunque es lento, el movimiento ameboide es lo suficientemente potente para permitir que las células se desplacen contra corriente, lo que permite a los organismos que viven en un medio acuoso perseguir y devorar a sus presas o a los glóbulos blancos viajar por el torrente sanguíneo para atrapar y engullir una bacteria o un virus.

3.2 Nutrición

La nutrición es una de las funciones vitales que permite a las células obtener la materia y energía que necesitan. Sin embargo, unas células son capaces de fabricar su propia materia orgánica mientras que otras necesitan incorporar materia orgánica ya elaborada. Por eso, según la forma de nutrición las células se pueden clasificar en dos grandes grupos: autótrofas y heterótrofas.

Las células autótrofas fabrican la materia orgánica que necesitan a partir de nutrientes inorgánicos utilizando una fuente de energía externa. Las células autótrofas pueden ser fotosintéticas (realizan la fotosíntesis y utilizan como fuente de energía la luz solar), o quimiosintéticas o quimiolitótrofas (obtienen la energía que necesitan para fabricar sus compuestos orgánicos de la oxidación de moléculas inorgánicas). Algunas células procariotas y las células eucariotas de algas y plantas son células fotosintéticas. En células eucariotas autótrofas, la fotosíntesis tiene lugar en los cloroplastos. Estos orgánulos contienen numerosos compartimentos internos denominados tilacoides donde las enzimas ayudan al proceso de transformación de la energía. Una simple hoja contiene entre 40 y 50 cloroplastos. Con suficiente luz solar, un árbol grande es capaz de producir hasta dos toneladas de azúcar en un solo día. La fotosíntesis en organismos procariotas (bacterias acuáticas por lo general) se realiza en pliegues de la membrana plasmática denominados cromatóforos, que contienen los pigmentos fotosintéticos. Las bacterias acuáticas producen el alimento consumido por organismos microscópicos que viven en estanques, ríos, lagos y mares. Las células quimiosintéticas solo son procariotas.

Las células heterótrofas obtienen la energía que necesitan de la oxidación de moléculas orgánicas que incorporan. Todos los animales, hongos, protozoos y algunas bacterias están formados por células heterótrofas.

3.3 Energía

Las células necesitan energía para realizar distintas funciones como moverse, fabricar y destruir moléculas, y transportar sustancias a través de la membrana celular. Independientemente de cómo las células hayan conseguido la materia orgánica, una parte de esa materia se utiliza para conseguir energía en forma de moléculas de ATP, el combustible celular; la oxidación de la materia orgánica libera energía que se utiliza para sintetizar ATP. La respiración celular es un conjunto de reacciones que permiten a las células obtener energía de las moléculas orgánicas al combinar sus átomos de carbono e hidrógeno con el oxígeno para producir dióxido de carbono y agua. La respiración celular o respiración aerobia tiene lugar en las mitocondrias en los organismos eucariotas. El interior de cada mitocondria contiene una membrana interna con numerosos repliegues que reciben el nombre de crestas. En la membrana interna, las enzimas forman una línea de ensamblado donde la energía presente en la glucosa y en otros nutrientes ricos en energía es transformada en ATP. En una célula normal se forman miles de moléculas de ATP por segundo. Algunos organismos procariotas también realizan una respiración aerobia. No obstante, carecen de mitocondrias, por lo que este proceso se realiza en el citoplasma.

Algunos tipos de células, que viven en ambientes anaerobios (carecen de oxígeno), como el lodo, charcas con agua estancada o en el interior del intestino de los animales, metabolizan la glucosa de manera incompleta obteniendo menos ATP. Esta degradación incompleta recibe el nombre de fermentación.

3.4 Síntesis de proteínas

Una célula típica contiene alrededor de 30.000 proteínas. Muchas de estas proteínas son enzimas necesarias para construir las moléculas principales utilizadas por las células (carbohidratos, lípidos, proteínas y ácidos nucleicos) o para ayudar a la degradación de esas moléculas una vez que han sido utilizadas. Otras proteínas forman parte de la estructura de la célula, por ejemplo, de la membrana plasmática y de los ribosomas. En los animales, las proteínas actúan también como hormonas y anticuerpos, y funcionan como sistemas de transporte para llevar otras moléculas por todo el cuerpo. Por ejemplo, la hemoglobina es una proteína que transporta oxígeno en los glóbulos rojos sanguíneos. La demanda celular de proteínas es continua.

Sin embargo, antes de poder fabricar una proteína hay que obtener, de uno o más genes, las instrucciones moleculares para lograrlo. Por ejemplo, en el ser humano un gen contiene la información para la fabricación de la proteína insulina, la hormona que las células necesitan para extraer glucosa del torrente sanguíneo, mientras que al menos dos genes contienen la información para la síntesis del colágeno, la proteína que aporta resistencia a la piel, tendones y ligamentos. El proceso de fabricación de las proteínas comienza cuando las enzimas, en respuesta a una señal de la célula, se unen al gen que contiene el código para toda o parte de la proteína necesaria. Las enzimas transfieren el código a una molécula nueva denominada ARN mensajero, que transporta el código desde el núcleo hasta el citoplasma. Esto permite que el código genético original permanezca seguro en el núcleo mientras el ARN mensajero envía pequeños fragmentos y piezas de información del ADN al citoplasma cuando es necesario. Dependiendo del tipo de célula, cada minuto se forman cientos o incluso miles de moléculas de ARN mensajero.

Al llegar al citoplasma, la molécula de ARN mensajero se une a un ribosoma. El ribosoma se desplaza a lo largo del ARN mensajero como un tren monorraíl sobre su vía, y se convierte en otro tipo de ARN (ARN de transferencia) que recopila y se une a los aminoácidos necesarios almacenados en el citoplasma para formar la proteína concreta o un trozo de ella. La proteína es modificada según sea necesario por el retículo endoplasmático y el aparato de Golgi antes de comenzar a desempeñar su función.

3.5 División celular

La mayoría de las células se dividen en algún momento de su ciclo vital y otras lo hacen docenas de veces antes de morir. Los organismos dependen de la división celular para la reproducción, crecimiento, reparación y sustitución de las células dañadas o envejecidas. Hay tres tipos de división celular: fisión binaria, mitosis y meiosis. La fisión binaria, el método utilizado por las células procariotas, da lugar a dos células hijas idénticas a la célula original. El proceso de mitosis es más complicado, aunque también da lugar a dos células genéticamente idénticas a la original y es el empleado por muchos organismos eucariotas unicelulares para reproducirse. Los organismos pluricelulares utilizan la mitosis para crecer, reparar y sustituir las células dañadas. Por ejemplo, se calcula que en el cuerpo humano se producen 25 millones de divisiones celulares mitóticas cada segundo para reemplazar a las células que han completado sus ciclos vitales normales. Las células del hígado, intestino y piel, por ejemplo, pueden ser sustituidas cada pocos días.

El tipo de división celular necesaria para llevar a cabo la reproducción sexual es la meiosis. Los organismos con reproducción sexual son las algas marinas, los hongos, las plantas y los animales (incluyendo, por supuesto, al ser humano). La meiosis difiere de la mitosis en que la división celular comienza con una célula que tiene una dotación completa de cromosomas y termina con la formación de células gameto, como espermatozoides y óvulos, que solo tienen la mitad de la dotación cromosómica. Cuando el espermatozoide y el óvulo se unen durante la fecundación, la célula resultante de esta unión, denominada cigoto, contiene la dotación completa de cromosomas.

4 ORIGEN DE LAS CÉLULAS

El mecanismo de evolución de las células sigue siendo una cuestión de estudio sujeta a una intensa investigación científica. Los estudios sobre la evolución de las células a partir de la materia inerte que existía en la Tierra primigenia han sido llevados a cabo por físicos, geólogos, químicos y biólogos. La Tierra se formó hace aproximadamente 4.500 millones de años y durante millones de años las erupciones volcánicas violentas arrojaron al aire sustancias como dióxido de carbono, nitrógeno, agua y otras moléculas pequeñas. Estas moléculas, bombardeadas con la radiación ultravioleta y la luz de intensas tormentas, entraron en colisión formando uniones químicas estables y originando moléculas de mayor tamaño, como los aminoácidos y los nucleótidos (componentes básicos de las proteínas y de los ácidos nucleicos respectivamente). Ciertos experimentos indican que estas moléculas de mayor tamaño se forman de manera espontánea en condiciones de laboratorio que simulan el medio que probablemente existía en los orígenes de la Tierra.

Los científicos hacen conjeturas sobre si la lluvia podría haber arrastrado estas moléculas hasta los lagos para crear un caldo primordial, un terreno nutritivo para el ensamblado de las proteínas, el ácido nucleico ARN y los lípidos. Algunos investigadores piensan que estas moléculas más complejas se formaron en grietas hidrotermales y no en los lagos. Ciertos científicos creen incluso que estas sustancias clave podrían haber alcanzado la Tierra desde meteoritos procedentes del espacio exterior. No obstante, con independencia del medio en el que se originaron estas moléculas, los científicos coinciden en que las proteínas, los ácidos nucleicos y los lípidos representan los materiales básicos que formaron las primeras células. En el laboratorio, los científicos han puesto de manifiesto la unión de moléculas de lípidos para formar estructuras similares a la membrana plasmática celular. Como consecuencia de estas observaciones, los científicos plantean que millones de años de colisiones moleculares dieron lugar a esferas de lípidos que rodearon moléculas de ARN, la molécula más simple con capacidad de autorreplicación. Estos sistemas de moléculas rodeados de membrana, denominados protocélulas, ya existían hace 3.800 millones de años y habrían sido los ancestros de las primeras células procariotas.

Al no existir oxígeno en la atmósfera, esas primeras células eran anaerobias y obtenían la energía mediante procesos de fermentación. Esos primeros organismos eran heterótrofos, lo que acabó ocasionando que los nutrientes orgánicos fueran agotándose. Esa situación facilitó la aparición de organismos autótrofos fotosintéticos capaces de fabricar materia orgánica utilizando la luz solar, similares a las actuales cianobacterias. El oxígeno producido por estos organismos procariotas cambió radicalmente la composición de la atmósfera primitiva y favoreció la evolución de bacterias que usaban oxígeno para llevar a cabo la respiración aerobia, un proceso más eficaz de producción de ATP que la fermentación. Algunos estudios moleculares sobre la evolución de los genes en las arquebacterias indican que estos organismos podrían haber evolucionado en las aguas calientes de las grietas hidrotermales o manantiales de agua caliente ligeramente antes que las cianobacterias. Es probable que las arquebacterias dependieran de la fermentación para sintetizar ATP, igual que las cianobacterias.

Las células eucariotas pudieron haber evolucionado a partir de células procariotas primitivas hace aproximadamente 2.000 millones de años. Las células precursoras de las células eucariotas perdieron sus paredes celulares, lo que permitió que la membrana plasmática se expandiera y se plegara. Finalmente, estos pliegues podrían haber dado origen a compartimentos separados dentro de la célula (los precursores de ciertos orgánulos presentes en las células eucariotas). Según la teoría endosimbiótica, establecida por la bióloga estadounidense Lynn Margulis, estas primeras células eucariotas englobaron en su interior distintas bacterias que establecieron una relación simbiótica con su huésped. Estudios moleculares tanto del ADN como de los ribosomas de tipo bacteriano presentes en mitocondrias y cloroplastos indican que los ancestros de la mitocondria y el cloroplasto fueron, en algún momento, bacterias de vida libre que fueron engullidas por otras células procariotas en su propio beneficio (por su capacidad para producir ATP o por su eficacia para realizar la fotosíntesis). Durante generaciones, las células eucariotas completas con mitocondrias (los ancestros de los animales), o tanto con mitocondrias como con cloroplastos (los ancestros de las plantas) evolucionaron.

5 DESCUBRIMIENTO Y ESTUDIO DE LAS CÉLULAS

Las primeras observaciones de las células fueron realizadas en 1665 por el científico inglés Robert Hooke, que utilizó un microscopio de su propia invención para examinar distintos objetos, como una lámina fina de corcho. Al observar las filas de las celdas diminutas que forman el tejido muerto de la madera, Hooke acuñó el término célula porque le recordaban a las pequeñas celdas ocupadas por los monjes en los monasterios. Aunque Hooke fue el primero en observar y describir las células, no llegó a comprender su relevancia. Unos años más tarde, el holandés Antoni van Leeuwenhoek, fabricante de microscopios, construyó uno de los mejores de la época. Gracias a su invento, Leeuwenhoek fue el primero en observar, dibujar y describir una amplia variedad de organismos vivos, como bacterias que se deslizaban en la saliva, organismos unicelulares que se movían en el agua de las charcas y espermatozoides nadando en el semen. Sin embargo, hubo que esperar algo más de un siglo para que los científicos fueran conscientes de la verdadera importancia de las células.

Los avances más significativos en el estudio de la célula tuvieron lugar en el siglo XIX, con el desarrollo y perfeccionamiento de los microscopios ópticos que permitieron observar con más detalle el interior de las células. Este desarrollo culminó con la formulación de la teoría celular por Scheleiden y Schwann. La colaboración entre el botánico alemán Matthias Jakob Schleiden y el zoólogo alemán Theodor Schwann permitió reconocer las similitudes fundamentales entre las células animales y vegetales. En 1839 presentaron la idea revolucionaria de que todos los organismos vivos están formados por una o más células y de que la célula constituye, por tanto, la unidad estructural de los seres vivos.

Sin embargo, el problema del origen de la célula no estaba resuelto, ya que se pensaba que las células podían originarse a partir de materia no celular. Fue otro científico alemán, Rudolf Virchow (1855) quien propuso que todas las células proceden de otras células. Así quedó establecida la teoría celular tal y como la conocemos hoy día:

• La célula es la unidad morfológica de los seres vivos. Todos los seres vivos están formados por una o más células.

• La célula es la unidad fisiológica de los seres vivos.

• Toda célula procede de otra célula por división de esta.

Hacia finales del siglo XIX, conforme se perfeccionaron aún más los microscopios ópticos, los científicos fueron capaces de observar los cromosomas en el interior de la célula. A esta investigación ayudaron las nuevas técnicas de tinción que hicieron posible las primeras observaciones detalladas de la división celular, incluyendo observaciones de las diferencias entre la mitosis y la meiosis en la década de 1880. En las primeras décadas del siglo XX numerosos científicos se concentraron en el estudio de los cromosomas durante la división celular. En ese momento estaba vigente el concepto de que las mitocondrias transmitían la información hereditaria. Sin embargo, hacia 1920 los científicos descubrieron que los cromosomas contienen genes y que los genes transmiten la información hereditaria de generación en generación. Durante ese periodo, los científicos comenzaron a conocer algunos de los procesos químicos que tienen lugar en el interior de las células. En la década de 1920 se inventó la ultracentrifugadora, un instrumento que hace girar las células en los tubos de ensayo a una velocidad muy elevada, lo que hace que las partes más pesadas se depositen en el fondo del tubo de ensayo. Este instrumento permitió a los científicos separar las mitocondrias relativamente pesadas y abundantes del resto de la célula y estudiar sus reacciones químicas. Hacia finales de la década de 1940 se consiguió explicar la función de las mitocondrias en la célula. Con ayuda de técnicas refinadas de ultracentrifugación, los científicos aislaron poco después los orgánulos de menor tamaño y empezaron a comprender sus funciones.

Mientras algunos científicos estudiaban las funciones celulares otros examinaban los detalles de la estructura celular. En la década de 1940 se logró un desarrollo tecnológico crucial: la invención del microscopio electrónico, que emplea un haz de electrones en lugar de rayos de luz para observar las muestras. Las nuevas generaciones de microscopios electrónicos han mejorado la resolución, revelando orgánulos como el retículo endoplasmático, los lisosomas, el aparato de Golgi y el citoesqueleto.

El descubrimiento de la estructura del ADN en 1953 por el bioquímico estadounidense James D. Watson y el biofísico británico Francis Crick dio paso a la era de la biología molecular, un área de estudio que permanece en continuo auge. Un campo especialmente activo en los últimos años ha sido la investigación de la señalización celular, el proceso por el que los mensajes moleculares encuentran su camino en el interior de la célula a través de una serie de complejas vías proteínicas.

Otra área muy activa de la biología celular es la relacionada con la muerte celular programada o apoptosis. En el cuerpo humano cada segundo, millones de células se suicidan como parte esencial del ciclo normal de recambio celular. También parece ser un mecanismo de seguridad frente a la enfermedad: cuando aparecen mutaciones dentro de una célula, esta, por lo general, se autodestruye. Si no ocurre así, la célula puede dividirse y dar lugar a células hijas mutadas que continúan dividiéndose y propagándose, formando de manera gradual lo que denominamos tumor. Este crecimiento celular descontrolado puede ser benigno, sin riesgo, o canceroso y puede amenazar la salud del tejido. La apoptosis es objeto de estudio por parte de los científicos cuya intención es conocer la transformación cancerosa de las células.

GENETICA. PERCY ZAPATA MENDO.

Genética

1 INTRODUCCIÓN

Genética, estudio científico de cómo se transmiten los caracteres físicos, bioquímicos y de comportamiento de padres a hijos. Este término fue acuñado en 1906 por el biólogo británico William Bateson. Los genetistas determinan los mecanismos hereditarios por los que los descendientes de organismos que se reproducen de forma sexual no se asemejan con exactitud a sus padres, y estudian las diferencias y similitudes entre padres e hijos que se reproducen de generación en generación según determinados patrones. La investigación de estos últimos ha dado lugar a algunos de los descubrimientos más importantes de la biología moderna.

2 ORIGEN DE LA GENÉTICA

La ciencia de la genética nació en 1900, cuando varios investigadores de la reproducción de las plantas descubrieron el trabajo del monje austriaco Gregor Mendel, que aunque fue publicado en 1866 había sido ignorado en la práctica. Mendel, que trabajó con la planta del guisante (chícharo), describió los patrones de la herencia en función de siete pares de rasgos contrastantes que aparecían en siete variedades diferentes de esta planta. Observó que los caracteres se heredaban como unidades separadas, y cada una de ellas lo hacía de forma independiente con respecto a las otras. Señaló que cada progenitor tiene pares de unidades, pero que sólo aporta una unidad de cada pareja a su descendiente. Más tarde, las unidades descritas por Mendel recibieron el nombre de genes.

3 BASES FÍSICAS DE LA HERENCIA

Poco después del redescubrimiento de los trabajos de Mendel, los científicos se dieron cuenta de que los patrones hereditarios que él había descrito eran comparables a la acción de los cromosomas en las células en división, y sugirieron que las unidades mendelianas de la herencia, los genes, se localizaban en los cromosomas. Ello condujo a un estudio profundo de la división celular.

Cada célula procede de la división de otra célula. Todas las células que componen un ser humano derivan de las divisiones sucesivas de una única célula, el cigoto, que se forma a partir de la unión de un óvulo y un espermatozoide. La composición del material genético es idéntica en la mayoría de las células y con respecto al propio cigoto (suponiendo que no se ha producido ninguna mutación, véase más adelante). Cada célula de un organismo superior está formada por un material de aspecto gelatinoso, el citoplasma, que contiene numerosas estructuras pequeñas. Este material citoplasmático envuelve un cuerpo prominente denominado núcleo. Cada núcleo contiene cierto número de diminutos cromosomas filamentosos. Ciertos organismos simples, como las bacterias, carecen de un núcleo delimitado aunque poseen un citoplasma que contiene uno o más cromosomas.

Los cromosomas varían en forma y tamaño y, por lo general, se presentan en parejas. Los miembros de cada pareja, llamados cromosomas homólogos, tienen un estrecho parecido entre sí. La mayoría de las células del cuerpo humano contienen 23 pares de cromosomas, en tanto que la mayor parte de las células de la mosca del vinagre o de la fruta, Drosophila, contienen cuatro pares, y la bacteria Escherichia coli tiene un cromosoma único en forma de anillo. En la actualidad, se sabe que cada cromosoma contiene muchos genes, y que cada gen se localiza en una posición específica, o locus, en el cromosoma.

El proceso de división celular mediante el cual una célula nueva adquiere un número de cromosomas idéntico al de sus progenitores se denomina mitosis. En la mitosis cada cromosoma se divide en dos fragmentos iguales, y cada uno emigra hacia un extremo de la célula. Tras la división celular, cada una de las dos células resultantes tiene el mismo número de cromosomas y genes que la célula original. Por ello, cada célula que se origina en este proceso posee el mismo material genético. Los organismos unicelulares simples y algunas formas pluricelulares se reproducen por mitosis, que es también el proceso por el que los organismos complejos crecen y sustituyen el tejido envejecido.

Los organismos superiores que se reproducen de forma sexual se forman a partir de la unión de dos células sexuales especiales denominadas gametos. Los gametos se originan mediante meiosis, proceso de división de las células germinales. La meiosis se diferencia de la mitosis en que sólo se transmite a cada célula nueva un cromosoma de cada una de las parejas de la célula original. Por esta razón, cada gameto contiene la mitad del número de cromosomas que tienen el resto de las células del cuerpo. Cuando en la fecundación se unen dos gametos, la célula resultante, llamada cigoto, contiene toda la dotación doble de cromosomas. La mitad de estos cromosomas proceden de un progenitor y la otra mitad del otro.

4 LA TRANSMISIÓN DE GENES

La unión de los gametos combina dos conjuntos de genes, uno de cada progenitor. Por lo tanto, cada gen —es decir, cada posición específica sobre un cromosoma que afecta a un carácter particular— está representado por dos copias, una procedente de la madre y otra del padre (para excepciones a esta regla, véase el apartado siguiente sobre sexo y ligamiento sexual). Cada copia se localiza en la misma posición sobre cada uno de los cromosomas pares del cigoto. Cuando las dos copias son idénticas se dice que el individuo es homocigótico (u homocigoto) para aquel gen particular. Cuando son diferentes, es decir, cuando cada progenitor ha aportado una forma distinta, o alelo, del mismo gen, se dice que el individuo es heterocigótico (o heterocigoto) para dicho gen. Ambos alelos están contenidos en el material genético del individuo, pero si uno es dominante, sólo se manifiesta éste. Sin embargo, como demostró Mendel, el carácter recesivo puede volver a manifestarse en generaciones posteriores (en individuos homocigóticos para sus alelos).

Por ejemplo, la capacidad de una persona para pigmentar la piel, el cabello y los ojos, depende de la presencia de un alelo particular (A), mientras que la ausencia de esta capacidad, denominada albinismo, es consecuencia de otro alelo (a) del mismo gen (por consenso, los alelos se designan siempre por una única letra; el alelo dominante se representa con una letra mayúscula y el recesivo con una minúscula). Los efectos de A son dominantes; los de a, recesivos. Por lo tanto, los individuos heterocigóticos (Aa), así como los homocigóticos (AA), para el alelo responsable de la producción de pigmento, tienen una pigmentación normal. Las personas homocigóticas para el alelo que da lugar a una ausencia de pigmentación (aa) son albinas. Cada hijo de una pareja en la que ambos son heterocigóticos (Aa) tiene un 25% de probabilidades de ser homocigótico AA, un 50% de ser heterocigótico Aa, y un 25% de ser homocigótico aa. Sólo los individuos que son aa serán albinos. Observamos que cada hijo tiene una posibilidad entre cuatro de ser albino, pero no es exacto decir que en una familia, una cuarta parte de los niños estarán afectados. Ambos alelos estarán presentes en el material genético del descendiente heterocigótico, quien originará gametos que contendrán uno u otro alelo. Se distingue entre la apariencia, o característica manifestada, de un organismo, y los genes y alelos que posee. Los caracteres observables representan lo que se denomina el fenotipo del organismo, y su composición genética se conoce como genotipo.

Éste no es siempre el caso en el que un alelo es dominante y el otro recesivo. Por ejemplo, el dondiego de noche puede tener flores de color rojo, blanco o rosa. Las plantas con flores rojas pueden tener dos copias del alelo R para el color rojo de las flores, y, por lo tanto, son homocigóticas RR. Las plantas con flores blancas tienen dos copias del alelo r para el color blanco de las flores, y son homocigóticas rr. Las plantas con una copia de cada alelo, heterocigóticas Rr, son rosas, es decir, una mezcla de colores producida por los dos alelos.

Rara vez la acción de los genes es cuestión de un gen aislado que controla un solo carácter. Con frecuencia un gen puede controlar más de un carácter, y un carácter puede depender de muchos genes. Por ejemplo, es necesaria la presencia de al menos dos genes dominantes para producir el pigmento violeta en las flores de la planta del guisante de olor. Estas plantas que son homocigóticas para alguno o ambos de los alelos recesivos implicados en el carácter del color producen flores blancas. Por lo tanto, los efectos de un gen pueden depender de cuáles sean los otros genes presentes.

5 HERENCIA CUANTITATIVA

Los caracteres que se expresan como variaciones en cantidad o extensión, como el peso, la talla o el grado de pigmentación, suelen depender de muchos genes, así como de las influencias del medio. Con frecuencia, los efectos de genes distintos parecen ser aditivos, es decir, parece que cada gen produce un pequeño incremento o descenso independiente de los otros genes. Por ejemplo, la altura de una planta puede estar determinada por una serie de cuatro genes: A, B, C y D. Supongamos que cuando su genotipo es aabbccdd, la planta alcanza una altura media de 25 cm, y que cada sustitución por un par de alelos dominantes aumenta la altura media en unos 10 centímetros. En el caso de una planta que es AABBccdd su altura será de 45 cm, y en aquella que es AABBCCDD será de 65 centímetros. En realidad, los resultados no suelen ser tan regulares. Genes diferentes pueden contribuir de forma distinta a la medida total, y ciertos genes pueden interactuar, de modo que la aportación de uno depende de la presencia de otro. La herencia de características cuantitativas que dependen de varios genes se denomina herencia poligénica. La combinación de influencias genéticas y del medio se conoce como herencia multifactorial.

6 LIGAMIENTO GENÉTICO Y MAPA GENÉTICO

El principio de Mendel según el cual los genes que controlan diferentes caracteres son heredados de forma independiente uno de otro es cierto sólo cuando los genes existen en cromosomas diferentes. El genetista estadounidense Thomas Hunt Morgan y sus colaboradores demostraron en una serie amplia de experimentos con moscas del vinagre (que se reproducen con gran velocidad), que los genes se disponen de forma lineal en los cromosomas y que cuando éstos se encuentran en el mismo cromosoma, se heredan como una unidad aislada mientras el propio cromosoma permanezca intacto. Los genes que se heredan de esta forma se dice que están ligados.

Sin embargo, Morgan y su grupo observaron también que este ligamiento rara vez es completo. Las combinaciones de características alelas de cada progenitor pueden reorganizarse entre algunos de sus descendientes. Durante la meiosis, una pareja de cromosomas análogos puede intercambiar material durante lo que se llama recombinación o sobrecruzamiento (el efecto del sobrecruzamiento puede observarse al microscopio como una forma de unión entre los dos cromosomas). El sobrecruzamiento se produce más o menos al azar a lo largo de los cromosomas, de modo que la frecuencia de recombinación entre dos genes depende de la distancia que los separe en el cromosoma. Si los genes están relativamente alejados, los gametos recombinados serán habituales; si están más o menos próximos, los gametos recombinados serán poco frecuentes. En el descendiente que procede de los gametos, el sobrecruzamiento se manifiesta en la forma de nuevas combinaciones de caracteres visibles. Cuanto mayor sea el sobrecruzamiento, más elevado será el porcentaje de descendientes que muestran las combinaciones nuevas. Consecuencia de ello, los científicos pueden trazar o dibujar mediante experimentos de reproducción apropiados, las posiciones relativas de los genes a lo largo del cromosoma.

Para detectar recombinaciones, que se producen sólo rara vez, los genetistas han utilizado durante los últimos años organismos que producen gran número de descendientes con gran rapidez, como bacterias, mohos y virus. Por esta razón, son capaces de trazar mapas de genes que están muy próximos. El método introducido en el laboratorio de Morgan ha adquirido hoy tal precisión que se pueden dibujar las diferencias que se originan en un gen particular. Estos mapas han demostrado que no sólo los genes se disponen de forma lineal a lo largo de los cromosomas, sino que ellos mismos son estructuras lineales. La detección de recombinaciones poco frecuentes puede poner de manifiesto estructuras incluso menores que las que se observan con los microscopios más potentes.

Los estudios en hongos, y más tarde en moscas del vinagre, han demostrado que en ocasiones la recombinación de alelos puede tener lugar sin que se produzcan intercambios recíprocos entre los cromosomas. En apariencia, cuando existen dos versiones distintas del mismo gen (en un individuo heterocigótico), una de ellas puede ser corregida para equipararse a la otra. Tales correcciones pueden tener lugar en cualquier dirección (por ejemplo, el alelo A puede ser modificado a a o a la inversa). Este proceso se ha denominado conversión genética. En ocasiones, varios genes adyacentes experimentan una conversión conjunta; la probabilidad de que ésta se produzca entre dos genes depende de la distancia entre ellos. Esto proporciona otra forma de determinar las posiciones relativas de los genes en el cromosoma.

7 SEXO Y LIGAMIENTO SEXUAL

Morgan contribuyó también a los estudios genéticos cuando en 1910 observó diferencias sexuales en la herencia de caracteres, un patrón que se conoce como herencia ligada al sexo.

El sexo está determinado por la acción de una pareja de cromosomas. Las anomalías del sistema endocrino u otros trastornos pueden alterar la expresión de los caracteres sexuales secundarios, aunque casi nunca invierten totalmente el sexo. Por ejemplo, una mujer tiene 23 pares de cromosomas, y los componentes de cada par son muy similares. Sin embargo, un varón tiene 22 pares iguales de cromosomas y uno con dos cromosomas diferentes en tamaño y estructura. Los 22 pares de cromosomas semejantes en mujeres y en hombres se llaman autosomas. El resto de los cromosomas se denomina, en ambos sexos, cromosomas sexuales. En las mujeres los dos cromosomas sexuales idénticos se llaman cromosomas X. En el hombre, uno de los cromosomas sexuales es también un cromosoma X, pero el otro, más pequeño, recibe el nombre de cromosoma Y. Cuando se forman los gametos, cada óvulo producido por la mujer contiene un cromosoma X, pero el espermatozoide generado por el hombre puede contener o un cromosoma X o uno Y. La unión de un óvulo, que siempre contiene un cromosoma X, con un espermatozoide que también tiene un cromosoma X, origina un cigoto con dos X: un descendiente femenino. La unión de un óvulo con un espermatozoide con un cromosoma Y da lugar a un descendiente masculino. Este mecanismo sufre modificaciones en diversas plantas y animales.

La longitud aproximada del cromosoma Y es un tercio de la del X, y aparte de su papel en la determinación del sexo masculino, parece que es genéticamente inactivo. Por ello, la mayor parte de los genes en el X carecen de su pareja en el Y. Se dice que estos genes están ligados al sexo, y tienen un patrón hereditario característico. Por ejemplo, la enfermedad denominada hemofilia, está producida por un gen recesivo (h) ligado al sexo. Una mujer con HH o Hh es normal; una mujer con hh tiene hemofilia. Un hombre nunca es heterocigótico para este gen porque hereda sólo el gen que existe en el cromosoma X. Un varón con H es normal; con h padecerá hemofilia. Cuando un hombre normal (H) y una mujer heterocigótica (Hh) tienen descendencia, las niñas son normales, aunque la mitad de ellas tendrán el gen h—es decir, ninguna de ellas es hh, pero la mitad tendrán el genotipo Hh—. Los niños heredan sólo el H o el h; por lo tanto, la mitad de ellos serán hemofílicos. Por esta razón, en condiciones normales, una mujer portadora transmitirá la enfermedad a la mitad de sus hijos, y el gen recesivo h a la mitad de sus hijas, quienes a su vez se convierten en portadoras de hemofilia. Se han identificado otras muchas situaciones en los seres humanos, incluida la ceguera para los colores rojo y verde, la miopía hereditaria, la ceguera nocturna y la ictiosis (una enfermedad cutánea) como caracteres ligados al sexo.

8 FUNCIÓN DE LOS GENES: EL ADN Y EL CÓDIGO DE LA VIDA

Después de que la ciencia de la genética se estableciera y de que se clarificaran los patrones de la herencia a través de los genes, las preguntas más importantes permanecieron sin respuesta durante más de cincuenta años: ¿cómo se copian los cromosomas y sus genes de una célula a otra, y cómo determinan éstos la estructura y conducta de los seres vivos? A principios de la década de 1940, dos genetistas estadounidenses, George Wells Beadle y Edward Lawrie Tatum, proporcionaron las primeras pistas importantes. Trabajaron con los hongos Neurospora y Penicillium, y descubrieron que los genes dirigen la formación de enzimas a través de las unidades que los constituyen. Cada unidad (un polipéptido) está producida por un gen específico. Este trabajo orientó los estudios hacia la naturaleza química de los genes y ayudó a establecer el campo de la genética molecular.

Desde hace tiempo se sabe que los cromosomas están compuestos casi en su totalidad por dos tipos de sustancias químicas, proteínas y ácidos nucleicos. Debido en parte a la estrecha relación establecida entre los genes y las enzimas, que son proteínas, al principio estas últimas parecían la sustancia fundamental que determinaba la herencia. Sin embargo, en 1944, el bacteriólogo canadiense Oswald Theodore Avery demostró que el ácido desoxirribonucleico (ADN) era el que desempeñaba esta función. Extrajo el ADN de una cepa de bacterias y lo introdujo en otra cepa. La segunda no sólo adquirió las características de la primera, sino que también las transmitió a generaciones posteriores. Por aquel entonces, se sabía que el ADN estaba formado por unas sustancias denominadas nucleótidos. Cada nucleótido estaba compuesto a su vez por un grupo fosfato, un azúcar conocido como desoxirribosa, y una de las cuatro bases que contienen nitrógeno. Las cuatro bases nitrogenadas son adenina (A), timina (T), guanina (G) y citosina (C).

En 1953, el genetista estadounidense James Dewey Watson y el británico Francis Harry Compton Crick aunaron sus conocimientos químicos y trabajaron juntos en la estructura del ADN. Esta información proporcionó de inmediato los medios necesarios para comprender cómo se copia la información hereditaria. Watson y Crick descubrieron que la molécula de ADN está formada por dos cadenas, o filamentos, alargadas que se enrollan formando una doble hélice, algo parecido a una larga escalera de caracol. Las cadenas, o lados de la escalera, están constituidas por moléculas de fosfato e hidratos de carbono que se alternan. Las bases nitrogenadas, dispuestas en parejas, representan los escalones. Cada base está unida a una molécula de azúcar y ligada por un enlace de hidrógeno a una base complementaria localizada en la cadena opuesta. La adenina siempre se vincula con la timina, y la guanina con la citosina. Para hacer una copia nueva e idéntica de la molécula de ADN, sólo se necesita que las dos cadenas se extiendan y se separen por sus bases (que están unidas de forma débil); gracias a la presencia en la célula de más nucleótidos, se pueden unir a cada cadena separada bases complementarias nuevas, formando dos dobles hélices. Si la secuencia de bases que existía en una cadena era AGATC, la nueva contendría la secuencia complementaria, o “imagen especular”, TCTAG. Ya que la base de cada cromosoma es una molécula larga de ADN formada por dos cadenas, la producción de dos dobles hélices idénticas dará lugar a dos cromosomas idénticos.

La estructura del ADN es en realidad mucho más larga que la del cromosoma, pero se halla muy condensada. Ahora se sabe que este empaquetamiento se basa en diminutas partículas llamadas nucleosomas, sólo visibles con el microscopio electrónico más potente. El ADN está enrollado secuencialmente alrededor de cada nucleosoma formando una estructura en forma de rosario. Entonces la estructura se repliega aún más, de manera que las cuentas se asocian en espirales regulares. Por esta razón, el ADN tiene una configuración en espiral enrollada, parecida al filamento de una bombilla.

Tras los descubrimientos de Watson y Crick, quedó el interrogante de saber cómo el ADN dirigía la formación de proteínas, los compuestos principales de todos los procesos vitales. Las proteínas no son sólo los componentes principales de la mayoría de las estructuras celulares, sino que también controlan casi todas las reacciones químicas que se producen en la materia viva. La capacidad de una proteína para formar parte de una estructura, o para ser una enzima que influye sobre la frecuencia de una reacción química particular, depende de su estructura molecular. Esta estructura depende a su vez de su composición. Cada proteína está formada por uno o más componentes denominados polipéptidos, y cada polipéptido está constituido por una cadena de subunidades llamadas aminoácidos. En los polipéptidos hay veinte tipos distintos de aminoácidos. Al final, el número, tipo y orden de los aminoácidos en una cadena determina la estructura y función de la proteína de la que forma parte.

8.1 El código genético

Desde que se demostró que las proteínas eran producto de los genes, y que cada gen estaba formado por fracciones de cadenas de ADN, los científicos llegaron a la conclusión de que debe haber un código genético mediante el cual el orden de las cuatro bases nitrogenadas en el ADN podría determinar la secuencia de aminoácidos en la formación de polipéptidos. En otras palabras, debe haber un proceso mediante el cual las bases nitrogenadas transmitan la información que dicta la síntesis de proteínas. Este proceso podría explicar cómo los genes controlan las formas y funciones de las células, tejidos y organismos. Como en el ADN sólo hay cuatro tipos de nucleótidos, y, sin embargo, las proteínas se constituyen con 20 clases diferentes de aminoácidos, el código genético no podría basarse en que un nucleótido especificara un aminoácido. Las combinaciones de dos nucleótidos sólo podrían especificar 16 aminoácidos (42 = 16), de manera que el código debe estar formado por combinaciones de tres o más nucleótidos sucesivos. El orden de los tripletes, o como se han denominado, codones, podría definir el orden de los aminoácidos en el polipéptido.

Diez años después de que Watson y Crick determinaran la estructura del ADN, el código genético fue descifrado y verificado. Su solución dependió en gran medida de las investigaciones llevadas a cabo sobre otro grupo de ácidos nucleicos, los ácidos ribonucleicos (ARN). Se observó que la obtención de un polipéptido a partir del ADN se producía de forma indirecta a través de una molécula intermedia conocida como ARN mensajero (ARNm). Parte del ADN se desenrolla de su empaquetamiento cromosómico, y las dos cadenas se separan en una porción de su longitud. Una de ellas actúa como plantilla sobre la que se forma el ARNm (con la ayuda de una enzima denominada ARN polimerasa). El proceso es muy similar a la formación de una cadena complementaria de ADN durante la división de la doble hélice, salvo que el ARN contiene uracilo (U) en lugar de timina como una de sus cuatro bases nucleótidas, y el uracilo (similar a la timina) se une a la adenina en la formación de pares complementarios. Por esta razón, una secuencia de adenina - guanina - adenina - timina - citosina (AGATC) en la cadena codificada de ADN, origina una secuencia de uracilo - citosina - uracilo - adenina - guanina (UAUAG) en el ARNm.

8.2 Transcripción

La formación de una cadena de ARNm por una secuencia particular de ADN se denomina transcripción. Antes de que termine la transcripción, el ARNm comienza a desprenderse del ADN. Finalmente, un extremo de la molécula nueva de ARNm, que ahora es una cadena larga y delgada, se inserta en una estructura pequeña llamada ribosoma, de un modo parecido a la introducción del hilo en una cuenta. Al tiempo que el ribosoma se desplaza a lo largo del filamento de ARNm, su extremo se puede insertar en un segundo ribosoma, y así sucesivamente. Utilizando un microscopio de alta definición y técnicas especiales de tinción, los científicos pueden tomar fotografías de las moléculas de ARNm con sus unidades de ribosomas asociados.

Los ribosomas están formados por una proteína y ARN. El grupo de ribosomas unidos a un ARNm recibe el nombre de polirribosoma o polisoma. Como cada ribosoma pasa a lo largo de toda la molécula de ARNm, lee el código, es decir, la secuencia de bases de nucleótidos del ARNm. La lectura, que se denomina traducción, tiene lugar gracias a un tercer tipo de molécula de ARN de transferencia (ARNt), que se origina sobre otro segmento del ADN. Sobre un lado de la molécula de ARNt hay un triplete de nucleótidos y al otro lado una región a la que puede unirse un aminoácido específico (con la ayuda de una enzima específica). El triplete de cada ARNt es complementario de una secuencia determinada de tres nucleótidos —el codón— en la cadena de ARNm. Debido a esta complementariedad, el triplete es capaz de reconocer y adherirse al codón. Por ejemplo, la secuencia uracilo-citosina-uracilo (UCU) sobre la cadena de ARNm atrae al triplete adenina-guanina-adenina (AGA) del ARNt. El triplete del ARNt recibe el nombre de anticodón.

Como las moléculas de ARNt se desplazan a lo largo de la cadena de ARNm en los ribosomas, cada uno soporta un aminoácido. La secuencia de codones en el ARNm determina, por tanto, el orden en que los aminoácidos son transportados por el ARNt al ribosoma. En asociación con el ribosoma, se establecen enlaces químicos entre los aminoácidos en una cadena formando un polipéptido. La nueva cadena de polipéptidos se desprende del ribosoma y se repliega con una forma característica determinada por la secuencia de aminoácidos. La forma de un polipéptido y sus propiedades eléctricas, que están también determinadas por la secuencia de aminoácidos, dictarán si el polipéptido permanece aislado o se une a otros polipéptidos, así como qué tipo de función química desempeñará después en el organismo.

En las bacterias y los virus, el cromosoma se encuentra libre en el citoplasma, y el proceso de la traducción puede empezar incluso antes de que el proceso de la transcripción (formación de ARNm) haya concluido. Sin embargo, en los organismos más complejos los cromosomas están aislados en el núcleo y los ribosomas sólo se observan en el citoplasma. Por esta razón, la traducción del ARNm en una proteína sólo puede producirse después de que el ARNm se ha desprendido del ADN y se ha desplazado fuera del núcleo.

8.3 Intrones

Un descubrimiento reciente e inesperado es que, en los organismos superiores, los genes están interrumpidos. A lo largo de una secuencia de nucleótidos que codifican un polipéptido en particular, puede haber una o más interrupciones formadas por secuencias sin codificar. En algunos genes pueden encontrarse 50 o más de estas secuencias, o intrones. Durante la transcripción, los intrones son copiados en el ARN junto con las secuencias codificadas, originando una molécula de ARN extra larga. En el núcleo, las secuencias que corresponden a los intrones son eliminadas del ARN por unas enzimas especiales para formar el ARNm, que se exporta al citoplasma.

Las funciones de los intrones (si existen) son desconocidas, aunque se ha sugerido que el procesamiento del ARN mediante la eliminación de las secuencias interrumpidas tal vez esté implicado en la regulación de la cantidad de polipéptidos producidos por los genes. También se han encontrado intrones en genes que codifican ácidos ribonucleicos especiales, como los que forman parte de los ribosomas. El descubrimiento de los intrones ha sido posible gracias a nuevos métodos que determinan la secuencia exacta de nucleótidos en las moléculas de ADN y ARN, métodos desarrollados por el biólogo molecular británico Frederick Sanger, quien recibió en 1980 por este trabajo el segundo Premio Nobel de Química.

8.4 Secuencias repetidas

Los estudios directos del ADN han demostrado también que en los organismos superiores ciertas secuencias de nucleótidos se repiten muchas veces en todo el material genético. Algunas de estas secuencias repetidas representan copias múltiples de genes que codifican polipéptidos, o de genes que codifican tipos especiales de ARN (casi siempre existen muchas copias de genes que producen el ARN de los ribosomas). Parece que otras secuencias que se repiten no codifican polipéptidos o ARN, y su función se desconoce. Entre ellas existen secuencias que, al parecer, son capaces de saltar de una zona a otra de un cromosoma, o de un cromosoma a otro. Estos transposones o genes móviles, elementos que se transponen, pueden originar mutaciones en los genes adyacentes a sus puntos de partida o llegada.

8.5 Genoma

Los biólogos tienen un gran interés en el estudio e identificación de los genes y han completado el genoma (conjunto de genes) de varios microorganismos, como el de la bacteria Escherichia coli. En 1998, los científicos lograron el hito de secuenciar el genoma de un organismo multicelular, un gusano nematodo de nombre científico Caenorhabditis elegans. En el año 2000 se descifró el material genético de la mosca del vinagre (Drosophila melanogaster), de la bacteria responsable del cólera (Vibrio cholerae), así como de la planta Arabidopsis thaliana. En 2002 se logró completar un mapa detallado del genoma del ratón y, ese mismo año, se finalizó la secuenciación del genoma del arroz; del protozoo Plasmodium falciparum, causante de la malaria; y del mosquito Anopheles gambiae, principal responsable de la transmisión de esa enfermedad. Científicos del consorcio público internacional que integra el Proyecto Genoma Humano anunciaron, en abril de 2003, la finalización de la secuenciación del genoma humano.

9 REGULACIÓN DE LOS GENES

El conocimiento de cómo se forman las proteínas permite a los científicos entender cómo los genes producen efectos específicos sobre las estructuras y funciones de los organismos. Sin embargo, esto no explica las variaciones que sufren los organismos en respuesta a circunstancias cambiantes del medio, o la manera en que un cigoto simple da lugar a todos los tejidos y órganos diferentes que constituyen un ser humano. En estos órganos y tejidos, la mayoría de las células contienen conjuntos de genes idénticos, sin embargo, forman proteínas distintas. Es evidente que en las células de cualquier tejido u órgano algunos genes están activos y otros no. Los distintos tejidos tienen series de genes diferentes en estado activo. Por esta razón, parte de la explicación del desarrollo de un organismo complejo debe basarse en cómo se activan los genes de forma específica.

El proceso de la activación de los genes en los organismos superiores aún no está claro, aunque gracias al trabajo del genetista francés François Jacob y de Jacques Lucien Monod, se sabe mucho acerca de este proceso en las bacterias. Junto a cada gen bacteriano existe un segmento de ADN conocido como promotor. Éste es el lugar sobre el cual la ARN polimerasa, enzima responsable de la producción de ARNm, se adhiere al ADN e inicia la transcripción. Entre el promotor y el gen existe con frecuencia otro segmento de ADN que recibe el nombre de operador, donde otra proteína —el represor— puede adherirse. Cuando el represor se une al operador, detiene el desplazamiento de la ARN polimerasa a lo largo del cromosoma y la producción de ARNm; por lo tanto, el gen se inactiva. Sin embargo, la presencia en la célula de una sustancia química determinada puede provocar que el represor se separe y el gen se active. Otras sustancias pueden afectar al grado de actividad del gen al alterar la capacidad de la ARN polimerasa de unirse al promotor. Un gen que recibe el nombre de regulador produce la proteína represora.

En las bacterias, varios genes pueden estar controlados de forma simultánea por un promotor y uno o más operadores. El sistema completo se denomina entonces operón. Parece que los operones no existen en los organismos complejos, aunque es muy posible que cada gen tenga su propio sistema individual de promotores y operadores, y que los intrones y las secuencias repetidas desempeñen también algún papel en este proceso.

Por ejemplo, las células eucariotas utilizan secuencias de ADN llamadas intensificadores (enhancers) para estimular la transcripción de genes que se localizan muy lejos del punto del cromosoma donde está ocurriendo la transcripción. Si una proteína específica se une al intensificador provoca un plegamiento del ADN de modo que acerca éste al sitio donde se está produciendo la transcripción. Esta acción activará o aumentará la velocidad de transcripción de los genes que se sitúan en el radio de acción del intensificador, tratándose generalmente de un gran grupo de genes relacionados.

10 HERENCIA CITOPLASMÁTICA

Además del núcleo, ciertos componentes de las células contienen ADN. Éstos incluyen los cuerpos citoplasmáticos denominados mitocondrias (los productores de energía de la célula), y los cloroplastos de las plantas, en los que tiene lugar la fotosíntesis. Estos cuerpos se autorreproducen. El ADN se replica de manera similar al del núcleo, y algunas veces su código se transcribe y se traduce en proteínas. En 1981 se determinó la secuencia completa de nucleótidos del ADN de una mitocondria. En apariencia, la mitocondria utiliza un código que difiere muy poco del utilizado por el núcleo.

Los caracteres determinados por el ADN citoplasmático se heredan con más frecuencia a través de la madre que del padre (exclusivamente a través de la madre en el caso del Homo sapiens), ya que los espermatozoides y el polen contienen por lo general menos material citoplasmático que el óvulo. Algunos casos de herencia materna aparente están, en realidad, relacionados con la transmisión de virus de la madre al hijo a través del citoplasma del óvulo.

11 MUTACIONES

Aunque la replicación del ADN es muy precisa, no es perfecta. Muy rara vez se producen errores, y el ADN nuevo contiene uno o más nucleótidos cambiados. Un error de este tipo, que recibe el nombre de mutación, puede tener lugar en cualquier zona del ADN. Si esto se produce en la secuencia de nucleótidos que codifica un polipéptido particular, éste puede presentar un aminoácido cambiado en la cadena polipeptídica. Esta modificación puede alterar seriamente las propiedades de la proteína resultante. Por ejemplo, los polipéptidos que distinguen la hemoglobina normal de la hemoglobina de las células falciformes difieren sólo en un aminoácido. Cuando se produce una mutación durante la formación de los gametos, ésta se transmitirá a las siguientes generaciones.

11.1 Mutaciones genéticas

Las mutaciones fueron descritas por primera vez en 1901 por uno de los redescubridores de Mendel, el botánico holandés Hugo De Vries. En 1929 el biólogo estadounidense Hermann Joseph Muller observó que la tasa de mutaciones aumentaba mucho con los rayos X. Más tarde, se vio que otras formas de radiación, así como las temperaturas elevadas y varios compuestos químicos, podían inducir mutaciones. La tasa también se incrementa por la presencia de alelos específicos de ciertos genes, conocidos como genes mutadores, algunos de los cuales parece ser que producen defectos en los mecanismos responsables de la fidelidad de la replicación de ADN. Otros pueden ser elementos que se transponen.

La mayoría de las mutaciones genéticas son perjudiciales para el organismo que las porta. Una modificación aleatoria es más fácil que deteriore y que no mejore la función de un sistema complejo como el de una proteína. Por esta razón, en cualquier momento, el número de sujetos que portan un gen mutante determinado se debe a dos fuerzas opuestas: la tendencia a aumentar debido a la propagación de individuos mutantes nuevos en una población, y la tendencia a disminuir debido a que los individuos mutantes no sobreviven o se reproducen menos que sus semejantes. Varias actuaciones humanas recientes, como la exposición a los rayos X con fines médicos, los materiales radiactivos y las mutaciones producidas por compuestos químicos, son responsables de su aumento.

Por lo general, las mutaciones son recesivas, sus efectos perjudiciales no se expresan a menos que dos de ellos coincidan para dar lugar a una situación homocigótica. Esto es más probable en la procreación consanguínea, en el apareamiento de organismos muy relacionados que pueden haber heredado el mismo gen mutante recesivo de un antecesor común. Por esta razón, las enfermedades hereditarias son más frecuentes entre los niños cuyos padres son primos que en el resto de la población.

11.2 Mutaciones cromosómicas

La sustitución de un nucleótido por otro no es el único tipo posible de mutación. Algunas veces se puede ganar o perder por completo un nucleótido. Además, es posible que se produzcan modificaciones más obvias o graves, o que se altere la propia forma y el número de los cromosomas. Una parte del cromosoma se puede separar, invertir y después unirse de nuevo al cromosoma en el mismo lugar. A esto se le llama inversión. Si el fragmento separado se une a un cromosoma distinto, o a un fragmento diferente del cromosoma original, el fenómeno se denomina translocación. Algunas veces se pierde un fragmento de un cromosoma que forma parte de una pareja de cromosomas homólogos, y este fragmento es adquirido por el otro. Entonces, se dice que uno presenta una deleción o deficiencia (dependiendo si el fragmento que se pierde es intersticial o terminal, respectivamente) y el otro una duplicación. Por lo general, las deficiencias o deleciones son letales en la condición homocigótica, y con frecuencia las duplicaciones también lo son. Las inversiones y las translocaciones suelen ser más viables, aunque pueden asociarse con mutaciones en los genes cerca de los puntos donde los cromosomas se han roto. Es probable que la mayoría de estos reordenamientos cromosómicos sean la consecuencia de errores en el proceso de sobrecruzamiento.

Otro tipo de mutaciones se produce cuando en la meiosis fracasa la separación de una pareja de cromosomas homólogos. Esto puede originar gametos —y, por lo tanto, cigotos— con cromosomas de más, y otros donde faltan uno o más cromosomas. Los individuos con un cromosoma de más se denominan trisómicos, y aquellos en los que falta uno, monosómicos. Ambas situaciones tienden a producir incapacidades graves. Por ejemplo, las personas con síndrome de Down son trisómicas, con tres copias del cromosoma 21.

En la meiosis fracasa a veces la separación de un grupo completo de cromosomas; es decir, se origina un gameto con el doble del número normal de cromosomas. Si dicho gameto se une con otro que contiene el número normal de cromosomas, el descendiente tendrá tres grupos de cromosomas homólogos en lugar de los dos habituales. Si se unen dos gametos con el doble del número normal de cromosomas, el descendiente estará dotado de cuatro grupos homólogos. Los organismos con grupos adicionales de cromosomas reciben el nombre de poliploides. La poliploidía es el único proceso conocido por el cual pueden surgir especies nuevas en una generación única. Se han observado poliploides viables y fértiles casi exclusivamente en organismos hermafroditas, como la mayoría de las plantas con flores y algunos invertebrados. Por lo general, las plantas poliploides son mayores y más robustas que sus antecesoras diploides. Algunas veces se originan fetos poliploides en la raza humana, pero fallecen en una fase precoz del desarrollo fetal y se produce un aborto.

12 GENES EN POBLACIONES

La genética de poblaciones, que investiga cómo se distribuyen los genes a través de las poblaciones de organismos, encontró una base sólida en los trabajos del matemático inglés Godfrey H. Hardy y el obstetra alemán Wilhelm Weinberg, quienes en 1908 formularon por separado lo que ahora se conoce como la ley de Hardy-Weinberg. Ésta afirma que si dos alelos de un gen autosómico (A y a) existen en una población, si la frecuencia con las que se presentan (expresadas en decimales) son p y q (p + q = 1) respectivamente, y si el apareamiento se produce de forma aleatoria con respecto al gen, entonces, después de una generación la frecuencia de los tres genotipos AA, Aa y aa será p2, 2pq y q2, respectivamente. Por consiguiente, en ausencia de alteraciones, estas secuencias permanecerán constantes de generación en generación. Cualquier variación de la frecuencia, que indica un cambio evolutivo, debe estar, por tanto, relacionada con alteraciones. Éstas pueden ser mutaciones, selección natural, migración y reproducción en pequeñas poblaciones que pueden perder alelos determinados por casualidad o desviación genética al azar.

La evidencia indica que la mayoría de las poblaciones son más variables genéticamente de lo que se supone. Los estudios de los productos polipeptídicos de los genes han señalado que, por término medio, cerca de un tercio de ellos tienen variantes genéticas con frecuencias superiores a las que cabría esperar a partir del equilibrio entre su generación por mutación, y la desventaja selectiva de los mutantes. Esto ha conducido a un interés creciente por las formas en que los alelos alternados se pueden mantener de forma activa en un estado de equilibrio de modo que ninguno reemplace al otro. Uno de estos mecanismos de equilibrio es la ventaja heterocigótica, cuando el heterocigótico sobrevive mejor que cualquiera de los homocigóticos. Otro mecanismo, llamado selección dependiente de la frecuencia, se basa en la ventaja relativa de las variedades poco frecuentes, como, por ejemplo, en poblaciones expuestas a depredadores. Los depredadores tienden a centrarse en la variedad más común, y a no hacer caso de las variedades raras. Por esta razón, cuando una variedad es poco frecuente puede estar en ventaja, aunque perderá dicha ventaja conforme la selección natural para el rasgo de adaptación la haga más abundante. Entonces, los depredadores empiezan a sacrificar la variedad favorecida, hasta alcanzar equilibrio entre los alelos de la población. Los parásitos pueden actuar de un modo similar, especializándose en atacar cualquier variedad de huéspedes que sea la más común, y manteniendo por ello la variabilidad genética en las poblaciones de huéspedes.

13 HERENCIA HUMANA

La mayoría de las características físicas humanas están influidas por múltiples variables genéticas, así como por el medio. Algunas, como la talla, poseen un fuerte componente genético, mientras que otras, como el peso, tienen un componente ambiental muy importante. Sin embargo, parece que otros caracteres, como el grupo sanguíneo y los antígenos implicados en el rechazo de trasplantes, están totalmente determinados por componentes genéticos. No se conoce ninguna situación debida al medio que varíe estas características. Desde hace poco tiempo, los antígenos de trasplante se estudian con detalle debido a su interés médico. Los más importantes son los que se deben a un grupo de genes ligados que se denominan complejo HLA. Este grupo de genes no sólo determina si el trasplante de órganos será aceptado o rechazado, sino que también está implicado en la resistencia que opone el organismo a varias enfermedades (entre las que se incluyen alergias, diabetes y artritis).

La susceptibilidad a padecer ciertas enfermedades tiene un componente genético muy importante. Este grupo incluye la esquizofrenia, la tuberculosis, la malaria, varias formas de cáncer, la migraña, las cefaleas y la hipertensión arterial. Muchas enfermedades infrecuentes están originadas por genes recesivos, y algunas por genes dominantes. De los aproximadamente 30.000 genes que contiene el genoma humano, unos 4.000 pueden estar asociados a enfermedades.

14 TECNOLOGÍAS GENÉTICAS

Los científicos han desarrollado una serie de técnicas bioquímicas y genéticas mediante las cuales el ADN puede ser separado y transferido de una célula a otra. Algunos de esos métodos de laboratorio ayudan a los investigadores a estudiar las propiedades de los genes en la naturaleza (permiten, por ejemplo, comparar los ADN de diferentes animales para establecer distancias evolutivas). Otras técnicas de ADN constituyen herramientas básicas en el campo de la ingeniería genética (alteración de genes de un organismo). Esas herramientas son utilizadas en la industria para desarrollar productos comerciales tales como cosechas más resistentes a la desecación o a las plagas, microorganismos capaces de descomponer compuestos contaminantes como hidrocarburos o petróleo, o capaces de producir determinados compuestos útiles en medicina en grandes cantidades como la insulina, el interferón o determinadas vacunas.

14.1 ADN recombinante

Las moléculas de ADN de cualquier forma de vida tienen la misma estructura y están constituidas por las mismas cuatro bases nitrogenadas, por lo que los científicos han utilizado esas similitudes para introducir uno o más genes de un organismo en otro diferente. Estos nuevos genes llegan a ser funcionales en el organismo receptor y a producir la proteína deseada. Esta tecnología del ADN recombinante es la que se ha utilizado para obtener grandes cantidades de determinadas proteínas como la insulina, necesaria para los enfermos diabéticos. Inicialmente la insulina se obtenía del ganado vacuno, pero era un proceso demasiado largo y costoso. El primer paso para obtener insulina utilizando la tecnología del ADN recombinante fue conocer la secuencia de nucleótidos del gen en la célula humana y emplear enzimas de restricción (proteínas especializadas que actúan como tijeras moleculares) para cortar la doble hélice de ADN y obtener el gen completo que codifica dicha proteína. Posteriormente, este fragmento de ADN es ligado a un vector, es decir, a otra molécula de ADN que permite transportar los genes de un organismo a otro. El vector que contiene el gen de insulina es introducido en una bacteria, como por ejemplo Escherichia coli, que producirá en unas pocas horas millones de células que contienen copias exactas del gen productor de insulina insertado por los científicos. El proceso de fabricar muchas células con ADN idéntico se conoce como clonación.

14.2 Genotecas o librerías de ADN

Una librería de ADN es un almacén de información genética que se mantiene en una bacteria como los libros en una biblioteca. Esas bacterias son clones creados con la tecnología del ADN recombinante y suponen una fuente constante de fragmentos de ADN necesarios para multitud de investigaciones. Una genoteca puede contener el genoma completo de un organismo troceado en pequeños fragmentos. Por ejemplo, para crear una librería del genoma humano todos sus cromosomas deben cortarse en pequeñas piezas que serán unidas al azar en vectores (por ejemplo plásmidos o bacteriófagos) e introducidos en una población de bacterias.

14.3 Reacción en cadena de la polimerasa (RCP)

La reacción en cadena de la polimerasa (RCP o más conocida como PCR, por sus siglas en inglés) ofrece una alternativa a la clonación basada en vectores como medio de generar numerosas copias de ADN a partir de una muestra simple. Esta técnica imita la forma en la que el ADN se replica de forma natural en el interior de la célula. Para llevar a cabo esta técnica los científicos aislan el fragmento que va a ser amplificado en un tubo de ensayo y le aplican calor para separar las dos cadenas de la molécula. Una vez que se ha enfriado, se añaden unos fragmentos cortos de ADN, denominados oligonucleótidos (primers), que son complementarios a una de las cadenas a la que se unen, marcando así el segmento que debe ser amplificado. Se añaden entonces a la muestra nucleótidos y una enzima denominada ADN polimerasa que construye, con los nucleótidos añadidos, una cadena complementaria de cada segmento amplificado, obteniendo de nuevo moléculas de ADN de doble cadena. Cada ciclo de calentamiento y enfriamiento duplica la cantidad de ADN deseado en el tubo de ensayo, por lo que en unas cuantas horas se pueden obtener millones de copias de un fragmento de ADN. Ésta es la técnica que se utiliza para amplificar, por ejemplo, trazas de ADN encontradas en la escena de un crimen o en un animal fósil.

14.4 Electroforesis

Esta técnica permite separar fragmentos de ADN en función de su tamaño al aplicar una corriente eléctrica a un gel en el interior del cual se ha introducido una mezcla de fragmentos. Éstos comienzan a moverse desde el polo negativo al polo positivo de tal modo que los fragmentos más pequeños se mueven más rápido que los más grandes. Cuando la corriente cesa, los fragmentos de ADN se han distribuido a lo largo del gel, situándose los más pequeños más cerca del polo positivo, adoptando una apariencia similar a un código de barras. Cada barra contiene un fragmento de ADN de un tamaño determinado. Adicionalmente puede utilizarse una secuencia complementaria de un ADN como sonda para buscar un fragmento específico en el patrón de bandas. Por ejemplo, los científicos pueden usar el ADN encontrado en la sangre presente en la escena de un crimen como sonda para buscar fragmentos complementarios en electroforesis conteniendo ADN obtenido de diversas personas sospechosas.

14.5 Secuenciación de ADN

Una vez que un fragmento interesante de ADN se ha aislado o identificado, los científicos necesitan determinar si la secuencia de nucleótidos de dicho fragmento es un gen conocido o qué clase de proteína puede estar produciendo. Esta técnica permite determinar la secuencia específica (el orden preciso de bases nucleótidas) de un fragmento de ADN. La mayoría de los tipos de secuenciación utilizan la técnica de extensión de oligonucleótido ideada por el británico Frederick Sanger. Esta técnica se puede utilizar por ejemplo para detectar mutaciones relacionadas con enfermedades tales como la fibrosis quística, o bien para alterar la secuencia de un gen y estudiar la función de la proteína resultante.