jueves, 22 de julio de 2010

LA PESTE. INFORMACION ACTUAL DE UNA PLAGA QUE AZOTA EL VALLE CHICAMA. PERCY ZAPATA MENDO.

LA PESTE.


Esta peste es una enfermedad infecciosa que afecta tanto a animales como a seres humanos. Es causada por la bacteria Yersinia pestis, que se encuentra en los roedores y sus pulgas, en muchas partes del mundo, incluso nuestro Valle Chicama, en el cual se han reportado algunos casos.




La Y. pestis se destruye y seca fácilmente si está expuesta a la luz solar. No obstante, sobrevive hasta una hora en el aire, aun cuando esto puede variar según las condiciones.


La peste pulmonar es una de varias formas de peste, que pueden ocurrir de manera separada o en combinación, dependiendo de las circunstancias:


•La peste pulmonar ocurre cuando la Y. pestis infecta los pulmones. Este tipo de peste puede propagarse de persona a persona a través del aire. La transmisión puede ocurrir si una persona inhala bacterias aerolizadas, lo que es posible en un ataque terrorista. La peste pulmonar también puede propagarse al inhalar la Y. pestis suspendida en las gotas minúsculas que se forman en las vías respiratorias de una persona (o animal) que sufre de peste pulmonar. Para infectarse de esta manera, por lo general se requiere que una persona esté en contacto directo y cercano con una persona o animal enfermo. La peste pulmonar también puede darse si una persona que sufre de peste bubónica o peste septicémica no recibe el tratamiento pertinente y la bacteria entra a los pulmones.

•La peste bubónica es la peste más común . Esto ocurre cuando una pulga infectada pica a una persona o cuando ésta se infecta con materiales contaminados que entran por algún corte en la piel. A los pacientes se le hinchan y duelen los ganglios (llamados bubones), tienen fiebre, dolor de cabeza, escalofríos y se sienten débiles. La peste bubónica no se propaga de una persona a otra.

•La peste septicémica ocurre cuando la bacteria de la peste se multiplica en la sangre por sí sola o a consecuencia de una complicación de la peste pulmonar o bubónica. Cuando ocurre pos sí sola, se da de la misma manera como se da la peste bubónica, pero, no se forman bubones. Los pacientes presentan fiebre, escalofríos, postración, shock y hemorragia en la piel o en otros órganos. La peste septicémica no se propaga de una persona a otra.

Síntomas y tratamiento

En la peste pulmonar, las primeras señales de la enfermedad son fiebre, dolor de cabeza y debilidad; además se presenta rápidamente un cuadro de pulmonía con dificultad para respirar. La pulmonía progresa durante 2 a 4 días y puede provocar insuficiencia respiratoria y shock. De no ser atendido a tiempo, el paciente podría morir.


El tratamiento temprano de la peste pulmonar es esencial. A fin de reducir las probabilidades de muerte, es necesario administrar antibióticos dentro de las 24 horas a partir de la aparición de los primeros síntomas. La estreptomicina, gentamicina, tetraciclina y el cloromfenicol son antibióticos eficaces en el tratamiento contra la peste pulmonar.


El tratamiento a base de antibióticos durante 7 días protegerá a las personas que han estado en contacto directo y cercano con pacientes infectados. El uso de una máscara quirúrgica bien ajustada también protege contra la infección.

ANATOMIA. SISTEMA RESPIRATORIO. PERCY ZAPATA MENDO.

MODULO Nº 08.




SISTEMA RESPIRATORIO




El sistema respiratorio está compuesto por órganos que realizan diversas funciones, pero, la enorme importancia que estos órganos poseen, es su capacidad de intercambiar CO2 y O2 con el medio, ya que los sistemas biológicos poseen como cualidad principal el de ser sistemas abiertos que intercambian constantemente con el medio que los rodea.

La hematosis, o sea, el intercambio gaseoso que proporciona oxígeno a la sangre y elimina el dióxido de carbono que se produce en el organismo producto del metabolismo celular se realiza en los pulmones a nivel de formaciones especializadas denominadas alvéolos, los cuales constituyen parte del parénquima pulmonar. Para que el oxígeno contenido en el aire llegue a los pulmones, es necesario que exista una serie de estructuras tubulares que comuniquen los alvéolos con el exterior y que a su vez se encarguen de calentar, humedecer y eliminar gérmenes y/o partículas extrañas del aire, ésta es la denominada porción conductora del sistema respiratorio (nariz, nasofaringe, laringe, tráquea, bronquios y bronquiolos). La penetración del aire en esas vías se produce por la acción de los músculos respiratorios (intercostales y diafragma, principalmente) que aumentan y disminuyen de forma rítmica el tamaño de la cavidad torácica (inspiración y espiración).

Respiración humana

Cuando el diafragma se contrae y se mueve hacia abajo, los músculos pectorales menores y los intercostales presionan las costillas hacia fuera. La cavidad torácica se expande y el aire entra con rapidez en los pulmones a través de la tráquea para llenar el vacío resultante. Cuando el diafragma se relaja, adopta su posición normal, curvado hacia arriba; entonces los pulmones se contraen y el aire se expele.

A esto contribuye también la cavidad pleural, cuya presión negativa se opone a la retracción elástica del pulmón; por tanto, en el sistema respiratorio existe una porción conductora, cuya función es permitir la penetración del aire (función ventilatoria) y otra porción, la respiratoria integrada por bronquiolos respiratorios, conductos alveolares,sacos alveolares y alvéolos y cuya función es la hematosis.

A la par con esta función, los órganos del sistema respiratorio cumplen un conjunto de otras funciones importantes no relacionadas con el intercambio gaseoso como son:

1. Termorregulación y humectación del aire inspirado.

2. Descontaminación del aire inspirado de polvo y microorganismos.

3. Elaboración y secreción de IgA.

4. Participación en la regulación de la presión arterial mediante la producción de

"enzima convertidora" que interviene en la transformación de angiotensina I en

angiotensina II (metabolismo hidro-mineral)

5. Participa en la fonación; el olfato y en otras funciones que tienen una incidencia sistémica.

La respiración se encuentra regulada normalmente por factores humorales y nerviosos.

ELEMENTOS CONSTITUYENTES

El sistema respiratorio comprende un conjunto de estructuras que podemos dividir en dos grandes grupos de acuerdo a su participación en la respiración.

a) Sistema de conducción.

Constituyen un conjunto de cavidades o estructuras tubulares que tienen por finalidad conducir el aire desde el exterior a todas las regiones del pulmón en la inspiración o a la inversa desde el pulmón al exterior en la espiración y comprende órganos y estructuras extra e intrapulmonares.

Extrapulmonares

• cavidad nasal

• nasofaringe

• laringe

• tráquea

• bronquios primarios

Intrapulmonares

• bronquios intrapulmonares

• bronquiolos no respiratorios

b) Porción de intercambio gaseoso o respiratoria.

Región en la cual se realiza el intercambio de O2 y CO2 entre la sangre y la atmósfera y que comprende las siguientes estructuras:

• bronquiolos respiratorios.

• conductos alveolares.

• sacos alveolares.

• alvéolos.

Porción conductora extrapulmonar

Los componentes de la porción conductora presentan algunas características comunes,tales como: la existencia de un esqueleto óseo y/o cartilaginoso que permite a esta porción mantener su luz permeable al aire, y la presencia de un epitelio de revestimiento con cilios y células caliciformes, que sirven para humedecer el aire inspirado y para limpiar y englobar respectivamente los gérmenes o partículas extrañas que llegan a penetrar en las vías respiratorias.

A continuación pasamos a describir cada una de sus partes.

Cavidad nasal

La nariz presenta dos cavidades, una al lado de la otra, las cuales reciben el nombre de fosas o cavidades nasales. Están separadas por un tabique cartilaginoso (tabique nasal) y se abren en su parte anterior a través de la ventana nasal y, en la parte posterior, se comunican mediante las coanas con la nasofaringe. La ventana nasal posee cartílago elástico, el cual impide que ellas se adosen al tabique nasal en el momento de la inspiración.

La parte anterior de la ventana nasal recibe el nombre de vestíbulo y está recubierto, en su parte anterior, por tejido epitelial estratificado plano queratinizado, y presenta glándulas sebáceas, sudoríparas y folículos pilosos. Los pelos reciben el nombre de vibrisas; estas y las secreciones de las glándulas, impiden la entrada de partículas de polvo y otros cuerpos extraños. En la parte posterior del vestíbulo el epitelio es no queratinizado y más hacia atrás se transforma en el denominado epitelio respiratorio, el cual no es más que un epitelio seudoestratificado cilíndrico ciliado con células caliciformes.

Toda el área respiratoria está revestida por una mucosa gruesa que posee el epitelio respiratorio anteriormente mencionado (seudoestratificado cilíndrico ciliado con células caliciformes), que se encuentra sobre una membrana basal y se apoya en una lámina propia, la cual contiene glándulas mucosas y serosas, y células propias del tejido conjuntivo, tales como linfocitos y macrófagos. Esta lámina propia se adhiere bien al hueso o al cartílago situado por debajo; debido a esto es frecuente que en cirugía llamen a la mucosa de esta región mucoperiostio y mucopericondrio.

La superficie del epitelio está recubierta normalmente de mucus procedente de las células caliciformes y de las glándulas de su lámina propia. La mucosa produce aproximadamente medio litro de líquido en 24 h. El mucus y las partículas de polvo son desplazados hacia detrás por el movimiento ciliar que posee el epitelio; de esta manera son deglutidos o expectorados. Cada célula ciliada posee de 15 a 20 pestañas vibrátiles de unos 7 μm de alto.

La pared lateral de las fosas nasales, es irregular debido a que presenta formaciones óseas especiales que reciben el nombre de conchas (por su forma) o cornetes. Estas formaciones, de acuerdo con la posición que ocupan reciben el nombre de superior, medio e inferior.

Los cornetes medios, y particularmente los inferiores, poseen en su lámina propia un abundante plexo venoso de paredes delgadas; esta estructura de senos venosos se considera como un tejido eréctil, está recubierta por un endotelio y normalmente está colapsada; en diversas ocasiones (alergias y resfriados) pueden congestionarse (ingurgitarse) y producir cierto estado de obstrucción nasal.

La abundante irrigación nasal y las glándulas de la lámina propia, garantizan que el aire inspirado tenga la humedad y temperatura adecuadas.


 Zona olfatoria

En la parte superior de las fosas nasales, a nivel del techo de cada cavidad nasal, existe una región con características particulares que recibe el nombre de zona olfatoria, la cual se extiende hacia abajo en cada cavidad nasal. En la parte externa recubre casi todo el cornete superior y en la parte interna sigue hacia abajo por el tabique nasal hasta un centímetro aproximadamente. A este nivel la mucosa fresca tiene color amarillo que contrasta con el color rosa o rojo del resto de la mucosa, y en ella reside el órgano receptor de la olfación, formado por un epitelio seudoestratificado cilíndrico ciliado que contiene tres tipos diferentes de células: de sostén, basales y olfatorias.

Las células de sostén son prismáticas, estrechas en su porción basal y anchas en la apical, donde poseen microvellosidades; el pigmento de lipofucsina que poseen estas células es el responsable del color de la mucosa a este nivel. Los núcleos son ovales, de cromatina laxa, están situados a la mitad de la célula, y en el mismo plano aproximadamente.

Las células sensoriales u olfatorias son neuronas bipolares, en las cuales, sus dendritas se introducen entre las hendiduras de las células de sostén hasta alcanzar la superficie del epitelio, donde se observa una dilatación que suele denominarse bulbo olfatorio y de la que salen de 8 a 10 pequeños cilios olfatorios (elementos de percepción), cada uno de ellos en relación con un corpúsculo basal; dichos cilios son inmóviles. Los axones de las neuronas son amielínicos y penetran en la lámina propia, donde se reúnen y forman fibras nerviosas olfatorias que se dirigen al sistema nervioso central a través de la lámina cribosa del hueso etmoides.

Las células basales están situadas en la región basal del epitelio entre las células de sostén y las olfatorias; son pequeñas, redondeadas o cónicas y de núcleo ovoide. Parece que se trata de células capaces de diferenciarse en células de sostén. Este epitelio descansa en la membrana basal que lo separa de la lámina propia. En la lámina propia de esta región, de tejido conjuntivo fibroelástico, además de vasos y nervios, hay glándulas tuboalveolares de tipo seromucoso que desembocan en la superficie epitelial y reciben el nombre de glándulas de Bowman; la secreción de estas glándulas sirve para disolver las sustancias odoríferas y mantener a los cilios olfatorios nerviosos limpios, ya que estos son quimiorreceptores.


 Senos para nasales

Son cavidades que se encuentran en los huesos maxilares superiores, frontal,

esfenoides y etmoides, que se comunican con las fosas nasales por pequeños orificios.

Están recubiertas por epitelio de tipo respiratorio (seudoestratificado cilíndrico ciliado con células caliciformes) que se continúa del epitelio que recubre las fosas nasales, pero más delgado y con pocas células caliciformes.

La lámina propia es más delgada, formada principalmente por fibras colágenas, fibroblastos, células plasmáticas, linfocitos y eosinófilos, además presenta pocas glándulas y está unida al hueso formando un verdadero mucoperiostio. El mucus producido por las glándulas es drenado hacia las fosas nasales; si las aberturas de los senos son obstruidas, como ocurre algunas veces en los resfriados, la falta de un adecuado drenaje puede ocasionar alteraciones patológicas (sinusitis).


Nasofaringe

El aire inspirado, después de pasar por las fosas nasales continúa por la nasofaringe o rinofaringe, que es la porción superior de la faringe situada por detrás de las coanas, sigue por la orofaringe o bucofaringe (única porción visible de este órgano cuando abrimos la boca) y, por último, pasa a través de la hipofaringe ó laringofaringe para penetrar en la laringe. El epitelio es estratificado plano no queratinizado, excepto en la nasofaringe, cuya estructura es similar a la porción respiratoria de las fosas nasales, o sea, posee un epitelio respiratorio y en la lámina propia de su porción dorsal encontramos una agrupación de folículos linfoides; la amígdala faringea, que ante estímulos antigénicos reacciona hipertrofiándose y provocando obstrucción al paso del aire. Por su apariencia "glandular" se la conoce con el nombre de "adenoides".

Laringe

La laringe es un tubo de forma irregular que une la faringe con la tráquea y realiza distintas funciones; además de permitir la entrada y salida del aire, interviene muy directamente en la fonación (capacidad de emitir sonidos vocales), e impide con sus reflejos (ejemplo, la tos) que penetre algo que no sea aire a las vías respiratorias bajas.

Las paredes de la laringe contienen una serie de cartílagos unidos por tejido conjuntivo fibroelástico que las mantiene siempre abiertas e impiden que se cierren en el momento de la inspiración.

Los cartílagos mayores, tiroides, cricoide y aritenoides, son del tipo hialino, mientras otros son de tipo elástico (corniculados, cuneiformes y los externos de los aritenoides). La epiglotis es un cartílago elástico en forma de lengüeta situada delante del orificio superior de la laringe, el cual ocluye al ascender la laringe en el acto de deglución.

La mucosa de la laringe forma dos pliegues que sobresalen en la luz del órgano; estos son las cuerdas vocales verdaderas y las cuerdas vocales falsas, constituidas por el músculo tiroaritenoideo. El movimiento de las cuerdas vocales permite la salida de una mayor o menor columna de aire en el momento de la espiración, lo cual modifica la tonalidad del sonido.

El epitelio de la laringe es de tipo respiratorio, excepto en su cara ventral y en la cara dorsal de la epiglotis, así como en las cuerdas vocales verdaderas. En dichos lugares el epitelio es estratificado plano no queratinizado, por ser en estas zonas donde tiene lugar mayor fricción y desgaste. La lámina propia está formada por abundantes fibras elásticas donde hay glándulas de tipo mixto, predominando las mucosas. Estas glándulas no existen en las cuerdas vocales verdaderas; también encontramos folículos linfáticos. Es de destacar que en la laringe no hay una verdadera submucosa.


Tráquea

La laringe se continúa con la tráquea que es un tubo de aproximadamente 12 cm. De longitud y 2,5 cm. de diámetro; posee de 16 a 20 anillos de cartílago hialino en forma de C, es decir, que no se cierra en la parte posterior. Como todo órgano tubular está constituido por diferentes capas.

La mucosa traqueal está revestida por epitelio seudoestratificado cilíndrico ciliado con células caliciformes, en el cual encontramos los siguientes tipos de células: ciliadas, caliciformes, en cepillo tipo 1, en cepillo tipo 2, cortas y de gránulos pequeños.

Células del epitelio respiratorio.

1. Células cilíndricas ciliadas: Son células cilíndricas altas, con cerca de 300 cilios apicales, presentan un núcleo parabasal, El Aparato de Golgi está poco desarrollado, mitocondrias abundantes para el movimiento ciliar bajo los cuerpos basales.

2. Células caliciformes: Forma de cáliz o de copa, le siguen en cantidad a las anteriores, son células secretoras de proteínas y glicosaminoglucanos sulfatados (moco), presentan pocas vellosidades apicales, en el interior de su citoplasma tienen un RER desarrollado hacia la superficie basal, con basofilia a ese nivel, núcleo hacia la base, el Aparato de Golgi supranuclear poco desarrollado y en su parte apical se encuentran numerosos gránulos de secreción que con técnicas corrientes de H/E no se observan, debido a que son glucoproteínas por lo que sí son PAS+.

3. Células basales indiferenciadas: (lo cual le da la imagen de seudoestratificado, son las que permiten la regeneración del epitelio) Son pequeñas y redondeadas o piramidales, descansan en la lámina basal, pero no llegan a la superficie libre del epitelio, tiene un núcleo grande heterocromático, localizado por debajo del núcleo de las células cilíndricas y presentan un citoplasma basófilo, con escasos organitos y abundantes polirribosomas, además de que se multiplican por mitosis continuamente y originan los demás tipos celulares del epitelio respiratorio.

4. Células neuroendocrinas o granulosas: Pertenecen al Sistema APUD (sistema neuroendocrino difuso), son células muy similares a las células basales, presentan numerosos gránulos secretores de 100 a 300 nm, su centro es más denso a los electrones (se dirigen hacia la base, en relación directa con los vasos sanguíneos, son argirófilos o argentafines), que pueden contener neurohormonas, neurotransmisores y neuropéptidos.

5. Células en cepillo (tipo I y II): Son el resto de las células cilíndricas, que se caracterizan por tener microvellosidades apicales largas. Las de tipo I: Presentan expansiones en su base y son consideradas como células receptoras sensoriales. Las de tipo II: Tienen las características de una célula inmadura, son células en vías de diferenciación, probablemente representan una reserva para sustituir a las células ciliadas y caliciformes.

6. Células M: Son células presentadoras de antígeno, las zonas de la lámina propia que contienen nódulos linfáticos están recubiertas por células M similares a las que se localizan en el epitelio digestivo. Estas son células epiteliales especializadas, tienen forma de M, presentan en sus regiones basolaterales numerosas invaginaciones de la membrana plasmática, que forman depresiones que contienen linfocitos, ellas captan los antígenos de la luz y los interiorizan, luego los transportan a los linfocitos presentes en sus invaginaciones basales que emigran a los nódulos y a otros órganos linfoides.

7. Linfocitos del compartimiento mucoso (intraepiteliales): Se encuentran en los espacios extracelulares entre las células epiteliales y siempre por debajo de las uniones oclusivas, estos linfocitos vuelven al tejido conectivo de la lámina propia y a los nódulos linfáticos.

8. Células migratorias: Leucocitos de la sangre, basófilas y células cebadas.

El epitelio de la tráquea se localiza sobre una membrana basal que se encuentra, a su vez, sobre una lámina propia formada por tejido conectivo laxo rico en fibras elásticas dispuestas longitudinalmente. Es notable la gran tendencia linfática pudiéndose observar gran número de linfocitos y también nódulos linfáticos (compartimientomucoso).

El límite entre la mucosa y la submucosa está determinado por una mayor condensación de fibras elásticas a modo de lámina elástica.

La submucosa está constituida por tejido conectivo laxo sin límites definidos con el tejido conjuntivo fibroso del pericondrio de los anillos cartilaginosos. En la submucosa encontramos glándulas mixtas con predominio mucoso, las cuales son más abundantes entre los anillos cartilaginosos y en la parte posterior de la tráquea. El mucus que

elaboran tiene importancia en la eliminación de partículas. Cuando las vías aéreas son expuestas al tabaco o a otros irritantes, las glándulas de la submucosa aumentan en talla. Así mismo las células caliciformes también aumentan en talla y en ambos se modifica la glicoproteina que ellos secretan. Estos cambios pueden regresar si se abandona el mal hábito de fumar.

La muscular (incompleta), está formada por 20 anillos cartilaginosos con forma de herradura, que en su porción posterior están cerrados por haces entrelazados de músculo liso lo que hace que la tráquea sea aplanada en su parte posterior. Se trata de cartílago hialino con tendencia a hacerse fibroso con la edad.

La adventicia, formada por tejido conjuntivo laxo y fibroso, une este órgano con las partes del mediastino. Además, tanto los vasos sanguíneos como linfáticos forman verdaderos plexos en la mucosa de la tráquea.

Los nervios contienen fibras cerebroespinales y fibras vegetativas que terminan también en la mucosa. La inervación y la vascularización traqueales son independientes de la pulmonar.

Bronquios

La tráquea termina bifurcándose en dos bronquios primarios, principalmente extrapulmonares. Las características histológicas de estos bronquios son análogas a las de la tráquea ya descritas. El bronquio primario derecho penetra en el pulmón derecho dirigiéndose hacia la base de él, dando dos ramas destinadas a los lóbulos medio y superior. El bronquio primario izquierdo penetra en el lóbulo inferior de dicho pulmón y da una rama bronquial para el lóbulo superior.

Bronquios extrapulmonares

Estos bronquios se localizan en los hilios de los pulmones, donde establecen relaciones con todo un complejo tubular formado por arterias, venas y linfáticos, rodeado todo por tejido conjuntivo denso; este complejo tubular recibe el nombre de raíz del pulmón.


PULMONES

Pulmones humanos

Mientras que el pulmón derecho tiene tres lóbulos, el pulmón izquierdo sólo tiene dos, con un hueco para acomodar el corazón. Las dos ramificaciones de la tráquea, llamadas bronquios, se subdividen dentro de los lóbulos en otras más pequeñas y éstas a su vez en conductos aéreos aún más pequeños. Terminan en minúsculos saquitos de aire, o alveolos, rodeados de capilares. Cuando los alveolos se llenan con el aire inhalado, el oxígeno se difunde hacia la sangre de los capilares, que es bombeada por el corazón hasta los tejidos del cuerpo. El dióxido de carbono se difunde desde la sangre a los pulmones, desde donde es exhalado.

Los pulmones son dos órganos macizos por su apariencia macroscópica. Están situados en la cavidad torácica a cada lado del mediastino; ambos están recubiertos por una capa de células mesoteliales, la pleura visceral que a nivel del hilio o raíz de los pulmones se refleja sobre los mismos y forma la pleura parietal. Entre ambas pleuras existe un espacio potencial ocupado por una delgada película de líquido seroso.

Si penetra aire en la cavidad pleural (por rotura del pulmón o por punción de la pared torácica) el pulmón afectado se retrae produciéndose un neumotórax. Si en vez de aire penetra líquido (sangre por ejemplo) en la cavidad pleural se produce un hidrotórax o derrame pleural. En ambos casos se afecta la función respiratoria.

El pulmón está conectado con el mediastino por una zona pequeña, el pedículo pulmonar en donde están localizados los vasos y estructuras que entran y salen del pulmón.

Segmentación pulmonar.

El pulmón derecho tiene tres lóbulos y el pulmón izquierdo dos lóbulos. Cada lóbulo es aireado por una rama procedente de las divisiones del bronquio primario correspondiente.

El bronquio primario derecho se divide en superior e inferior antes de entrar al pulmón, mientras que el bronquio para el lóbulo medio derecho nace del bronquio que va al lóbulo inferior.

El bronquio primario izquierdo por lo regular no se divide hasta que ha entrado al tejido pulmonar. Estos bronquios secundarios ventilan cada lóbulo pulmonar.

Cada bronquio secundario se divide y dan origen a los bronquios terciarios (10 pulmón derecho, 8 pulmón izquierdo) y ventilan los llamados segmentos broncopulmonares.

Los bronquios terciarios se dividen en 30-60 ramas que originarán los bronquíolos, cada uno de los cuales ventila un lobulillo pulmonar. Hasta aquí llega la porción conductora pues las siguientes divisiones pertenecen a la porción respiratoria constituida por:


Bronquiolos respiratorios (1-3 por cada bronquiolo terminal).

Conducto alveolar (2-11 por cada bronquiolo terminal).

Saco alveolar (formado por grupos de alvéolos).

Alvéolos (300-500 millones en cada pulmón).


El pulmón como órgano macizo.

La pleura es la serosa que envuelve el pulmón y está formada por dos hojas, la parietal y la visceral que se continúan en el hilio del pulmón. Ambas hojas están recubiertas por un mesotelio (epitelio simple plano) y por debajo un tejido conectivo laxo. Este mesotelio forma una cubierta hermética de ambos pulmones. Ambas hojas se encuentran separadas por una cavidad virtual llena de una fina película líquida que actúa en la disminución de la fricción durante el movimiento respiratorio.


Bronquios intrapulmonares

Cada uno de ellos se divide repetidas veces dicotómicamente originando bronquios de menor calibre. Una característica digna de mencionar es que en los bronquios intrapulmonares los cartílagos se muestran en forma de placas irregulares y no en anillos en forma de C (como en la tráquea y los bronquios extrapulmonares), de tal manera que su pared no tiene una porción aplanada.

A medida que los bronquios van disminuyendo de calibre y se acercan a la porción respiratoria del pulmón, las estructuras histológicas de ellos se van simplificando y el epitelio se hace más bajo; esto no se efectúa de manera brusca, sino gradualmente.


Mucosa.


El epitelio pasa de seudoestratificado cilíndrico ciliado con células caliciformes a simple cilíndrico ciliado y con células caliciformes.

La lámina propia es rica en fibras elásticas y reticulares. Además de fibroblastos, contiene linfocitos, mastocitos y eosinófilos ocasionales. No hay una lámina elástica como en la tráquea. Sin embargo, en la lámina propia observamos la presencia de varios haces de tejido elástico que corren paralelos a todo lo largo del árbol bronquial.

Tales franjas pueden verse fácilmente a simple vista al estudiar la mucosa. Se ramifican conforme lo hacen las ramas bronquiales sucesivas que se continúan con los componentes elásticos de las vías aéreas terminales. En la lámina propia se observan nódulos linfáticos.

Entre la mucosa y la submucosa existe una capa de fibras musculares lisas dispuestas en espirales abiertas una hacia la derecha y otra hacia la izquierda y entremezclados con ellas hay fibras elásticas.


Submucosa.

Constituida por tejido conectivo con abundantes glándulas al igual que en la tráquea (entre los cartílagos). Los cartílagos forman anillos irregulares algunos de los cuales rodean completamente al bronquio. Al corte aparecen como placas incompletas. Los espacios entre los cartílagos están lleno de tejido conectivo colágeno que se continúa con el pericondrio. Los cartílagos están unidos por fibras elásticas gruesas.


Adventicia.

Tejido conectivo con vasos sanguíneos que se une al tejido pulmonar adyacente.

DIFERENCIAS


Bronquíolos

Las últimas ramificaciones de los bronquios de menor calibre se denominan bronquíolos, los cuales penetran internamente en el parénquima pulmonar (lobulillo pulmonar).

El lobulillo es la unidad estructural y funcional del pulmón. Tiene forma piramidal, su base se dirige hacia la pleura y su vértice se orienta hacia el hilio del pulmón. Es aireado por un bronquiolo y comprende todas las estructuras respiratorias originadas de su división. Por su vértice penetra un bronquiolo, las ramas de las arterias y venas pulmonares y salen los linfáticos. Su base tiene de 1 a 2 cm. con una altura variable.

Los lobulillos están separados por tabiques conectivos.

Los bronquíolos representan la 12ava a 15ava generación de ramificaciones del árbol bronquial (algunos autores plantean hasta una 20ava generación). Su diámetro es menor a 1 mm.

Los bronquíolos intralobulillares son aquellos que tienen un diámetro de 1 mm o menos; en ellos han desaparecido las placas cartilaginosas así como también las glándulas. Su pared se compone realmente de una mucosa representada por el epitelio y la lámina propia; la capa muscular y la adventicia de tejido conjuntivo laxo fibroso. La musculatura lisa es la capa más desarrollada, por ello en las preparaciones microscópicas la mucosa de los bronquíolos forma pliegues abundantes.

La contracción mantenida de estos músculos (músculos de Reisscisen) en casos patológicos (asma bronquial) dificulta grandemente la respiración por disminución brusca de la luz del bronquiolo; los broncoespasmos de los asmáticos son causados principalmente por la contracción de la musculatura bronquiolar. Los bronquíolos terminales tienen un diámetro de 0,5 mm y la mucosa está revestida con epitelio cúbico ciliado.

La mucosa presenta un epitelio que va de cilíndrico simple ciliado con algunas células caliciformes hasta cúbico alto ciliado sin células caliciformes en las ramas menores.

Dentro de los diferentes tipos celulares destacan las células ciliadas y las células de Clara.

En este epitelio existen dos tipos principales de células: las ciliadas y las no ciliadas.

Las ciliadas son similares a las de los bronquios pero de menor tamaño. Las no ciliadas o células bronquiales le dan al epitelio su carácter peculiar: son células altas y abombadas, que protruyen en la luz por encima por encima de las extremidades ciliares. Estas células bronquiales, denominadas también células de Clara dan un carácter de identidad a los pulmones de los mamíferos.

Células de Clara (también llamada célula bronquiolar) presentan un contorno liso con un ápice redondeado o como una cúpula que se proyecta hacia la luz. Posee REL abundante, mitocondrias abundantes y citocromo P450 y oxidasas.

Su función está relacionada con la producción de sustancias tensioactivas (que veremos en detalle más adelante).

Otras células no ciliadas que se encuentran en el epitelio bronquiolar son las células neurosecretoras de pequeños gránulos, que en este caso se organizan en cuerpos neuroepiteliales, sobre todo en las ramas de pequeño calibre. Al M/O se reconocen como un grupo de 8 a 10 células eosinófilas, intercaladas en el epitelio. Mediante técnicas para delimitar los nervios intrapulmonares, este grupo celular es argirófilo y “descansa” sobre una lámina basal solo visible al M/E. Dicha lámina está adosada a la de las células endoteliales de la gran malla capilar pulmonar.

La lámina propia es delgada y en ella predominan las fibras elásticas.

La capa muscular está más desarrollada que en el bronquio. Los haces se disponen en forma similar al descrito a propósito del bronquio; es decir, que no forma una capa circunferencial continua, sino, que está representada por haces de orientación variable; las fibras musculares se entremezclan con fibras elásticas.

Está inervada por el parasimpático; se relaja en la inspiración y se contrae al final de la espiración.

En los asmáticos se produce una contracción anormalmente persistente lo que impide la espiración profunda y el sujeto siente "falta de aire" (disnea). Este padecimiento tiene una base alérgica. Frente al antígeno que la desencadena se produce IgE que actúa sobre las células cebadas las cuales liberan el contenido de histamina de sus gránulos y esto provoca la contracción del músculo.

La adventicia es una capa de tejido fibroconectivo muy delgada.

El bronquiolo No posee:

a) Nódulos linfáticos.

b) Cartílagos.

c) Submucosa.

d) Glándulas.


PORCION RESPIRATORIA.

Bronquíolos respiratorios

Los bronquíolos respiratorios son las ramas de división de los bronquíolos terminales,

son más largos y presentan un diámetro ligeramente mayor (< 0.5 mm). En su trayecto la estructura varía, por lo cual se describen bronquíolos respiratorios de primero, segundo y tercer orden. La pared de ellos se caracteriza generalmente por presentar un epitelio bajo y alvéolos, es decir pequeñas evaginaciones de paredes delgadas capaces de realizar el intercambio gaseoso.

Los bronquíolos respiratorios de primer orden son aquellos cuyo epitelio es cilíndrico bajo o cúbico, con cilios y sin células caliciformes, y escasos alvéolos en su pared. Los de segundo orden poseen un epitelio cúbico sin cilios y un mayor número de alvéolos, y los de tercer orden presentan su pared casi totalmente alveolizada.

Conductos alveolares

Cada bronquiolo respiratorio se divide en conducto respiratorio o alveolar que tiene un epitelio plano muy delgado, a veces sólo apreciable al M/E. Los conductos alveolares son los últimos segmentos en presentar fibras musculares lisas; ellos terminan en dos sacos alveolares, los cuales son un verdadero racimo de alvéolos.

Alvéolos

Constituyen las últimas porciones del árbol bronquial y tienen el aspecto de una vesícula abierta. Su diámetro promedio no es mayor que 0,25 mm y la superficie total en un adulto es aproximadamente de 100-200 m2, disminuyendo en la espiración. En cada pulmón hay alrededor de 300 millones de alvéolos. Los alvéolos no poseen paredes propias sino que comparten una misma pared entre dos alvéolos vecinos.

Rodeando a los alvéolos hay una rica red capilar, la que se encuentra formando parte del tabique que comparten los alvéolos adyacentes. La estructura esponjosa del parénquima pulmonar se debe a los alvéolos.

La superficie interna de los alvéolos está revestida por dos tipos fundamentales de células: alveolares planas y alveolares grandes.

• Las células alveolares epiteliales planas, denominadas también neumocitos tipo I, células alveolares pequeñas o células pulmonares epiteliales, se extienden sobre la membrana basal. Al M/E estas células poseen pocos organitos y numerosas vesículas pinocíticas. Tienen un grosor aproximado de 0,2 μm excepto a nivel del núcleo, es decir, son células planas de citoplasma muy escaso, están muy extendidas en el alvéolo, 50 veces más que los neumocitos tipo II con los cuales están unidas mediante uniones ocluyentes. A través de su citoplasma difunden los gases O2 y CO2.

• Las células alveolares grandes (neumocitos granulares o tipo II) tienen forma romboidal y también se apoyan sobre la membrana basal; además, se unen a las otras células por uniones estrechas. Al M/O se identifican por sus núcleos vesiculares y el citoplasma vacuolado, y en cortes observados al M/E, se aprecia que las vacuolas poseen inclusiones características llamadas cuerpos multilamelares. Al M/E se visualizan en estas células, mitocondrias bien desarrolladas, el RER y el aparato de Golgi disperso. Los cuerpos lamelares poseen fosfolípidos, mucopolisacaridos y proteínas (incluyendo hidrolasas lisosómicas), dichos cuerpos son productos de la síntesis del componente tensioactivo del material que reviste los alvéolos (surfactante). La falta de esta sustancia provoca el colapso de los alvéolos, ocasionando estados patológicos en el recién nacido (membrana hialina). El agente tensioactivo es una mezcla de proteínas más fosfolípidos siendo el componente principal el fosfolípido (dipalmitil fosfatidil colina); la tensión superficial será inversamente proporcional a su concentración.


Alveolos

Una micrografía de escáner electrónico muestra los diminutos sacos llamados alveolos, en un corte de tejido pulmonar humano. Los seres humanos tienen una capa delgada con unos 700 millones de alveolos en sus pulmones. Esta capa es crucial para la respiración, ya que en ella se produce el intercambio de oxígeno y dióxido de carbono con los capilares sanguíneos circundantes.


Investigadores plantean que el hábito de fumar cigarrillos disminuyen la concentración de sustancia tensioactiva. Estas células presentan microvellosidades cortas en su superficie libre.

En la luz alveolar encontramos muy frecuentemente macrófagos que protegen la región respiratoria de la contaminación por microorganismos y por partículas inhaladas.

Los alvéolos no tienen pared independiente, de manera que los alvéolos adyacentes están separados por un tabique interalveolar que puede tener aperturas u orificios con un diámetro de 8 a 12 μm, llamados poros alveolares (poros de Kohn). Este comunica a dos alvéolos vecinos y tiene como función igualar las presiones entre los dos alvéolos que quedan comunicados por dicho poro.

En los tabiques interalveolares encontramos fibroblastos, macrófagos, mastocitos, plasmocitos, capilares, y fibras elásticas, fibras reticulares y algunas fibras colágenas.

Las fibras reticulares son más abundantes a nivel de los orificios de desembocadura de los alvéolos, donde encontramos también células de musculatura lisa.

Los fibroblastos (células septales) se consideran el elemento más abundante del intersticio del tabique y tienen como función el mantenimiento y reparación del tejido pulmonar.

Los macrófagos alveolares provienen de los monocitos, tienen un diámetro de 15-40 μm. Presentan un núcleo irregular, de forma de fríjol, con un nucléolo prominente; el citoplasma es vacuolado, con el Golgi desarrollado y algo menos el RER, se observan abundantes ribosomas libres y partículas de glucógeno en número moderado (glucógeno ß), los lisosomas primarios (0,5 μm) presentan diversas enzimas entre las cuales destacan las fosfatasas ácidas, ß glucuronidasa y lisozima. En fumadores, el citoplasma de estas células aparece lleno de masas pigmentadas del material fagocitado y no digerido. (Cuando fagocitan sustancias producidas por el cigarrillo pueden liberar productos lisosómicos al espacio extracelular y esto ocasiona inflamación). En la insuficiencia cardiaca presentan muchas vacuolas llenas de hemosiderina proveniente de la fagocitosis de eritrocitos extravasados y con la correspondiente degradación de su hemoglobina. Los fagocitos migran y pasan al sistema de conductos para posteriormente ser deglutidos.

Barrera aire-sangre

De todo lo anteriormente descrito se concluye, que para contactarse el O2 del aire inspirado y el CO2 contenido en la sangre, tienen que atravesar una serie de estructuras, a las cuales en conjunto se les ha denominado barrera aire-sangre. Estas estructuras son:

• Película alveolar surfactante

• Citoplasma de la célula epitelial (neumocito tipo I)

• Membrana basal de la célula epitelial

• Membrana basal del capilar

• Citoplasma de la célula endotelial

El espesor total de estas estructuras es de 0,3 – 0,7 μm; en algunos lugares las membranas basales pueden estar fusionadas.

Toda la serie de conductos descritos a partir del bronquiolo respiratorio (conductos alveolares, sacos alveolares y alvéolos) forman lo que muchos autores han descrito con el nombre de acinos pulmonares, y que están separados unos de otros por medio de tabiques de tejido conjuntivo sumamente delgados. Se estima que de 12 a 18 acinos forman un lobulillo pulmonar, y este se considera la unidad estructural y funcional del pulmón.


CIRCULACIÓN PULMONAR

La circulación pulmonar está dada por las arterias y venas pulmonares y bronquiales.

La arteria pulmonar contiene sangre venosa (desoxigenada) que se oxigena en la pared capilar de los alvéolos pulmonares. Donde quiera que existan alvéolos existe también red capilar, de la cual se originan las vénulas que se localizan en los tabiques, en las ramificaciones del árbol bronquial y en el hilio del pulmón. Los verdaderos vasos nutricios están representados por las arterias y venas bronquiales.

Los linfáticos pulmonares son abundantes y forman un sistema cerrado: un grupo superficial en la pleura visceral y uno profundo que acompaña los bronquios y vasos pulmonares. Estos dos grupos se interconectan en el hilio, y se continúan con los nódulos traqueobronquiales.

Los nervios pulmonares provienen de los nervios vagos y de la cadena simpática.


CORRELACION HISTOFISIOLOGICA EN EL SISTEMA RESPIRATORIO.


En el sistema respiratorio es importante considerar dos funciones: ventilación y hematosis.

La función ventilatoria se realiza por medio de las vías tubulares respiratorias: nariz, laringe, tráquea, bronquios y bronquíolos, y se facilita por la existencia de un esqueleto cartilaginoso que garantiza la permeabilidad del aire, al impedir el colapso de las paredes de estas estructuras. La función estrictamente respiratoria (hematosis) se realiza a nivel de los alvéolos, y comprende los cambios gaseosos que se efectúan entre la sangre desoxigenada que porta la arteria pulmonar y el aire que ocupan los alvéolos. El intercambio gaseoso se lleva acabo a través de la barrera respiratoria, por tanto, se efectúa a través de las estructuras que la componen y no de una membrana inerte.

El intercambio gaseoso se hace mediante una simple difusión, atravesando los componentes que integran la barrera aire-sangre por lo cual el epitelio de la pared de los alvéolos y del endotelio capilar es de tipo simple plano.

En condiciones patológicas el espesor de la barrera puede variar, aumentando la resistencia a la difusión, lo que trae como consecuencias perturbaciones pulmonares debidas a dicho espesamiento, y no a trastornos de la función ventilatoria. Esto sucede en membrana hialina, edema pulmonar, neumonías intersticiales y fibrosas, etcétera.

En la porción conductora del sistema respiratorio, los cilios y las células caliciformes engloban y limpian, respectivamente, los gérmenes y partículas extrañas que penetran en las vías respiratorias, los cuales pueden ser deglutidos o expulsados. Por su parte, en la porción respiratoria los macrófagos son los encargados de la defensa respecto a contaminaciones por microorganismos u otras sustancias.


CORRELACIONES MORFOFUNCIONALES.


A. Paredes rígidas:

Cualquier inspiración profunda o demasiado profunda podría colapsar estas estructuras. Esto no ocurre debido a la presencia del tejido óseo y del tejido cartilaginoso.

Así encontramos:

Tejido óseo: cavidades nasales

Cartílago: cavidades nasales

laringe

tráquea

bronquios extrapulmonares

bronquios intrapulmonares


B. Purificación del aire:

El aire inspirado debe llegar a las zonas de intercambio gaseoso libre de partículas y estéril para lo cual dispone de las siguientes estructuras.

1. Pelos en las cavidades nasales (vestíbulo); se les denomina vibrisas. Las vibrisas

actúan impidiendo la entrada de partículas mayores de 10 μm.

2. Cilios en el epitelio que reviste:

• cavidades nasales.

• laringe.

• tráquea.

• bronquios.

• bronquiolos no respiratorios.

• bronquiolos respiratorios.

Los cilios “barren” aquellas partículas de 2-10 μm que logran llegar a las vías aéreas de menor calibre. El mecanismo ciliar es tan potente que es capaz de mover las partículasa una velocidad de 16 mm/seg.

El epitelio puede variar desde pseudoestratificado cilíndrico ciliado con células caliciformes (en la tráquea) hasta cúbico ciliado (en el bronquiolo).

3- Células fagocíticas alveolares.

Los macrófagos alveolares fagocitan aquellas partículas menores de 2 μm. que logran

llegar al alvéolo.

En estudios realizados en el gato se comprobó que los macrófagos alveolares eliminan la astronómica cifra de 2 x 106 x hora (células) y que en el hombre esta cifra es más elevada. Los fagocitos migran hacia los bronquiolos y de ahí son desplazados por los cilios para más tarde ser deglutidos.

4- Moco (elaborado por las células caliciformes y las glándulas mucosas).

Las células caliciformes del epitelio (desde las cavidades nasales hasta los bronquios intrapulmonares), elaboran moco que es capaz de atrapar las partículas que han penetrado al inspirar.

Las glándulas que encontramos en las vías aéreas también contribuyen con su secreción a este mecanismo de atrapar partículas y purificar el aire.

Todos estos mecanismos son de extraordinaria importancia y lo comprenderemos así si nos detenemos a pensar que en cada litro de aire inspirado hay varios millones de partículas irritantes.


C. Calentamiento o enfriamiento del aire.

El aire que llega a los pulmones debe tener aproximadamente la temperatura corporal.

Esta adecuación se lleva a cabo a nivel de las fosas nasales, en los cornetes medio e inferior la lámina propia de la mucosa tiene gran vascularización sobre todo un conjunto de vasos que en circunstancias normales aparecían colapsados pero que pueden distenderse en algunas circunstancias (semejante a un tejido eréctil).


D. Defensa:

Presencia de nódulos linfáticos (compartimiento mucoso).


E. Distensibilidad variable:

Dado por un mecanismo músculo elástico que permite los movimientos inspiratorios y espiratorios del pulmón.

Músculos ------------- de la caja torácica.

Elastina --------------- fibras elásticas del pulmón.


F. Olfación:

Dado por el receptor olfatorio de las cavidades nasales.


G. Fonación:

Dada por las cuerdas vocales ubicadas en la laringe.


H. Variaciones en el diámetro:

Garantizado por fibras de musculatura lisa y que veremos como reaccionan a nivel de los bronquiolos en los individuos asmáticos.


PREGUNTAS RESUELTAS


1.- Es una cavidad que sirve como estructura de resonancia para la voz:

a) Faringe b) laringe c) senos para nasales d) cavidad nasal e) tráquea.

Rpta: c

Los senos para nasales son pequeñas cavidades o túneles. La cavidad nasal y los senos para nasales ayudan a filtrar, calentar y humedecer el aire que respiramos. También dan la resonancia a la voz, aligeran el peso del cráneo, y proveen un marco óseo para la cara y ojos. Hay varios senos para nasales, incluyendo:

. Los senos frontales sobre la nariz

. Los senos maxilares en la parte superior de ambos lados de la mandíbula superior.

. Los senos etmoidales detrás de ambos lados de la parte superior de la nariz.

. El seno esfenoidal detrás del seno etmoidal en el centro del cráneo.


2.- Complete:

Las trompas de Eustaquio comunican la………………………. Con el oído medio:

a) Laringe b) faringe c) bronquios d) cavidad nasal e) fosa nasal.

Rpta: b


La trompa de Eustaquio en la actualidad llamada tubo faringotimpanico. Es una estructura anatómica, en forma de comunicación o tubo, habitualmente cerrado, que une el oído medio con la faringe. Su función es regular las presiones dentro del oído medio para proteger sus estructuras ante cambios bruscos y para equilibrar las presiones a ambos lados del tímpano.


3.- Son los orificios nasales externos:

a) coanas b) narinas c) trompas d) senos para nasales e) bronquios.

Rpta: b


Las narinas son los orificios nasales que comunican las fosas nasales con el medio externo. Son los orificios que sirven de ingreso inicialmente al aire inspirado.


4.- Conducto formado por anillos cartilaginosos incompletos en forma de C.

a) Laringe b) esófago c) faringe d) tráquea e) bronquio.

Rpta: d


La tráquea empieza en el borde inferior del cartílago cricoides y se extiende hasta la carina. En la vida adulta mide 10 a 11 cm. De longitud, pero esta medida varia con la edad, sexo y raza. Personas con estatura baja tienden a tener una tráquea mas pequeña. Una medida aproximada del diámetro de la tráquea es la raíz del dedo índice. El diámetro en un plano coronal es aproximadamente de 2 a 2,5 cm.


5.- El pulmón derecho presenta lóbulos:

a) Superior e inferior b) superior, medio e inferior c) superior, laterales e inferiores d) superiores y laterales e) superior y medio.

Rpta: b


El pulmón tiene la forma de un semicono, de eje mayor vertical, con su superficie convexa en contacto con la pared torácica. Presenta una cisura o hendidura profunda dirigida oblicuamente de arriba abajo y de atrás adelante; es la cisura oblicua; única a la izquierda, esta cisura se bifurca a la derecha, formando una segunda cisura, la cisura horizontal. Estas cisuras dividen los pulmones en lóbulos (cisuras interlobulillares). El pulmón izquierdo comprende dos lóbulos (superior e inferior); el pulmón derecho, tres (superior, medio e inferior).


PREGUNTAS PROPUESTAS.


1.- la hematosis consiste en:

a) intercambio gaseosos entre alveolos pulmonares y la sangre b) la coagulación sanguínea c) la formación de glóbulos rojos d) la destrucción de glóbulos rojos e) la detención de una hemorragia.


2.- el volumen de aire que permanece después de una espiración forzada se denomina:

a) Capacidad vital b) volumen de reserva respiratoria c) volumen residual d) volumen de aire corriente e) ventilación pulmonar.


3.- complete:

Al realizarse la……………….. los músculos respiratorios se………………. Y disminuyen el tamaño de la cavidad torácica:

a) Espiración-relajan b) espiración-contraen c) espiración-relajan y contraen contantemente d) inspiración-contraen e) inspiración-relajan


4.- si se contrae el diafragma y los músculos intercostales, entonces:

a) la caja torácica disminuye su volumen b) se comprimen los pulmones c) es posible la inspiración de aire d) la presión del aire intrapulmonar es mayor a la presión atmosférica e) no hay respiración.


5.- la hematosis se realiza a través de la:

a) membrana celular b) alveolo c) membrana alveolo-capilar d) pleura e) tráquea.


6.- complete:

La frecuencia respiratoria es un adulto normal es de………………… respiraciones por minuto.

a) 10 a 12 b) 14 a 18 c) 20 a 22 d) 25 a 30 e) 30 a 35.

7.- es la célula que se encarga de realizar la hematosis:

a) neumocito I b) neumocito II c) macrófago d) fagocito e) célula en polvo.


8.- es el centro nervioso que regula la frecuencia respiratoria:

a) bulbo raquídeo b) mesencéfalo c) cerebelo d) medula espinal e) hipotálamo.


9.- es la porción solamente respiratoria de la faringe:

a) Hipofaringe b) laringofaringe c) bucofaringe d) nasofaringe e) orofaringe.


10.- la mayor parte de CO2 se transporta:

a) disuelto en el plasma b) como oxihemoglobina c) como ión bicarbonato e) como carboxihemoglobina.



CLAVES:

1.- a 6.- b

2.- c 7.- a

3.- e 8.- a

4.- c 9.- d

5.- c 10 .- c.

ANATOMIA. SISTEMA NERVIOSO. PERCY ZAPATA MENDO.

MODULO Nº 07.




SISTEMA NERVIOSO.




INTRODUCCIÓN.

Sistema nervioso, conjunto de los elementos que están relacionados con la recepción de los estímulos, la transmisión de los impulsos nerviosos o la activación de los mecanismos de los músculos.

ANATOMIA Y FUNCION:

En el sistema nervioso, la recepción de los estímulos es la función de unas células sensitivas especiales, los receptores. Los elementos conductores son unas células llamadas neuronas que pueden desarrollar una actividad lenta y generalizada o pueden ser unas unidades conductoras rápidas, de gran eficiencia. La respuesta específica de la neurona se llama impulso nervioso; ésta y su capacidad para ser estimulada, hacen de esta célula una unidad de recepción y emisión capaz de transferir información de una parte a otra del organismo.

CELULA NERVIOSA: LA NEURONA.

Estructura de una neurona

La neurona es la unidad funcional del sistema nervioso y está formada por el cuerpo celular, que contiene el núcleo y la mayor parte del citoplasma; unas prolongaciones cortas, normalmente muy ramificadas, que salen del cuerpo celular y que reciben el nombre de dendritas; y una prolongación más larga denominada axón. El axón de las neuronas del sistema nervioso periférico está rodeado de múltiples capas de membrana celular (mielina) de una célula de Schwann. Esta capa mielínica está interrumpida periódicamente en los nódulos de Ranvier.

Cada célula nerviosa o neurona consta de una porción central o cuerpo celular, que contiene el núcleo y una o más estructuras denominadas axones y dendritas. Estas últimas son unas extensiones bastante cortas del cuerpo neuronal y están implicadas en la recepción de los estímulos. Por contraste, el axón suele ser una prolongación única y alargada, muy importante en la transmisión de los impulsos desde la región del cuerpo neuronal hasta otras células.

NEUROFISIOLOGIA.

Neurofisiología, estudio de cómo las células nerviosas o neuronas reciben o trasmiten información. En el procesamiento de las señales nerviosas están implicados dos tipos de fenómenos: eléctricos y químicos. El proceso eléctrico propaga una señal en el interior de la neurona, y el proceso químico trasmite la señal desde una neurona a otra, o a una célula muscular.

Una neurona es una célula de gran longitud formada por un área central engrosada que contiene el núcleo, una prolongación larga llamada axón, y unas prolongaciones arborescentes más cortas llamadas dentritas. Las dentritas reciben los impulsos procedentes de otras neuronas. (Las excepciones son las neuronas sensitivas, como las que trasmiten información sobre la temperatura o el tacto, en las que la señal es generada por receptores cutáneos especializados). Estos impulsos se propagan eléctricamente a lo largo de la membrana celular hasta el final del axón. En el extremo del axón la señal se trasmite de forma química a una neurona adyacente o a una célula muscular.

 TRANSMISION ELECTRICA.

Una neurona está polarizada, es decir, tiene una carga eléctrica negativa en el interior de la membrana celular respecto al exterior. Esto se debe a la libre circulación de iones potasio con carga positiva a través de la membrana celular, y al mismo tiempo, a la retención de moléculas grandes con carga negativa dentro de la célula. Los iones de sodio con carga positiva se mantienen en el exterior de la célula mediante un proceso activo. Todas las células tienen esta diferencia de potencial, pero cuando se aplica a una célula nerviosa una corriente estimuladora se produce un suceso único. Primero, los iones de potasio penetran en la célula, reduciendo su carga negativa (despolarización). En un cierto momento las propiedades de la membrana cambian y la célula se hace permeable al sodio, que entra en ella con rapidez y origina una carga neta positiva en el interior de la neurona. Esto se denomina el potencial de acción.

Una vez alcanzado este potencial en una zona de la neurona, éste se propaga a lo largo del axón mediante un intercambio de iones en unos puntos específicos llamados nódulos de Ranvier. La amplitud del potencial de acción es autolimitado, debido a que una concentración elevada de sodio en el interior origina la expulsión de la célula primero de iones potasio, y después de sodio, restableciendo la carga negativa en el interior de la membrana celular, es decir la neurona se repolariza. El proceso completo dura menos de una milésima de segundo. Después de un breve lapso, llamado periodo refractario, la neurona está en condiciones de repetir este proceso.

 TRANSMISION QUIMICA.

Esquema de una sinapsis

El punto de contacto entre dos neuronas adyacentes recibe el nombre de sinapsis y a través de él se transmite el impulso nervioso. Cuando el impulso nervioso llega al extremo del axón, las vesículas que contienen los neurotransmisores liberan su contenido en el espacio que queda entre las dos células nerviosas, denominado hendidura sináptica. La energía necesaria para la síntesis de las sustancias transmisoras es aportada por las mitocondrias presentes en la terminación presináptica. Los neurotransmisores son agentes químicos que viajan hasta la neurona más próxima y se adhieren a los receptores específicos que se encuentran en la membrana postsináptica.

Cuando la señal eléctrica alcanza el extremo del axón, éste estimula en la célula unas pequeñas vesículas presinápticas. Estas vesículas contienen sustancias químicas llamadas neurotrasmisores, y son liberadas en el espacio submicroscópico que existe entre las neuronas (hendidura sináptica). El neurotrasmisor se une a receptores especializados sobre la superficie de la neurona adyacente. Este estímulo provoca la despolarización de la célula adyacente y la propagación de su propio potencial de acción. La duración de un estímulo procedente de un neurotrasmisor está limitado por su degradación en la hendidura sináptica y su recaptación por la neurona que lo había elaborado. Antes se pensaba que cada neurona elaboraba sólo un neurotrasmisor, pero estudios recientes han demostrado que algunas células elaboran dos o más.

ENCEFALO.

Encéfalo humano

El encéfalo humano tiene tres componentes estructurales principales: los grandes hemisferios cerebrales (parte integrante del cerebro) con forma de bóveda (arriba), el cerebelo, más pequeño y con cierta forma esférica (más abajo a la derecha), y el tronco cerebral (centro). En el tronco cerebral, destaca el puente de Varolio (el ensanchamiento central) y la médula oblongada o bulbo raquídeo (justo debajo del anterior). Los hemisferios cerebrales son responsables de la inteligencia y del razonamiento. El cerebelo ayuda a mantener el equilibrio y la postura. El bulbo raquídeo está implicado en el mantenimiento de las funciones involuntarias, tales como la respiración. El tálamo, situado entre el tronco cerebral y los hemisferios cerebrales, actúa como centro de retransmisión de los impulsos eléctricos que viajan hacia y desde la corteza cerebral.

Encéfalo, parte del sistema nervioso central de los vertebrados contenida dentro del cráneo. Es el centro de control del movimiento, del sueño, del hambre, de la sed y de casi todas las actividades vitales necesarias para la supervivencia. Todas las emociones humanas, como el amor, el odio, el miedo, la ira, la alegría y la tristeza, están controladas por el encéfalo. También se encarga de recibir e interpretar las innumerables señales que le llegan desde el organismo y el exterior.

ANATOMIA DEL ENCEFALO.

El encéfalo en la especie humana pesa aproximadamente 1,3 kg y es una masa de tejido gris-rosáceo que se estima está compuesta por unos 100.000 millones de células nerviosas o neuronas, conectadas unas con otras y responsables del control de todas las funciones mentales. Además de las neuronas, el encéfalo contiene células de la glía o neuroglia (células de soporte), vasos sanguíneos y órganos secretores (véase Neurofisiología).

El encéfalo está protegido por el cráneo y además cubierto por tres membranas denominadas meninges. La más externa, la duramadre, es dura, fibrosa y brillante y está adherida a los huesos del cráneo, por lo que no aparece espacio epidural, como ocurre en la médula; emite prolongaciones que mantienen en su lugar a las distintas partes del encéfalo y contiene los senos venosos, donde se recoge la sangre venosa del cerebro. La intermedia, la aracnoides, cubre el encéfalo laxamente y no se introduce en las circunvoluciones cerebrales. En la membrana interior, la piamadre, hay gran cantidad de pequeños vasos sanguíneos y linfáticos y está unida íntimamente a la superficie encefálica.

El encéfalo está bañado por el líquido cefalorraquídeo que circula de manera continua por el espacio subaracnoideo (entre la aracnoides y la piamadre) y que ocupa además las cuatro cavidades encefálicas, los ventrículos. Los ventrículos laterales son dos espacios bien definidos que se encuentran en cada uno de los dos hemisferios cerebrales y que conectan con un tercer ventrículo situado entre ambos hemisferios a través de pequeños orificios ovales, los agujeros interventriculares (de Monro). El tercer ventrículo desemboca en el cuarto ventrículo, que se localiza entre el tronco encefálico y el cerebelo, a través de un canal fino llamado acueducto de Silvio. Desde el cuarto ventrículo, el líquido cefalorraquídeo pasa al espacio subaracnoideo por tres orificios del techo del cuarto ventrículo. A partir de aquí circula por el espacio subaracnoideo que rodea la superficie del encéfalo y la médula espinal y por el conducto central de esta. El líquido cefalorraquídeo sirve para proteger la parte interna del cerebro de cambios bruscos de presión y para transportar sustancias químicas. Este líquido se forma en los ventrículos laterales, en unas redes de capilares que constituyen los plexos coroideos.

En el encéfalo se diferencian cuatro partes distintas pero conectadas: el cerebro o telencéfalo, constituido por dos grandes hemisferios casi simétricos; el diencéfalo cuyas estructuras principales son el tálamo y el hipotálamo localizados en la línea media sobre el tronco cerebral y debajo del cerebelo; el cerebelo, formado por dos hemisferios más pequeños que se localizan en la parte posterior del cerebro; y el tronco o tallo cerebral, una estructura central que gradualmente se convierte en la médula espinal y que abandona el cráneo a través de una abertura llamada agujero magno. El término tronco cerebral se refiere, en general, a todas las estructuras que hay entre el cerebro y la médula espinal, esto es, el mesencéfalo o cerebro medio, el puente de Varolio o protuberancia y el bulbo raquídeo o médula oblongada (medulla oblongata).

El encéfalo y la médula espinal forman el sistema nervioso central que se comunica con el resto del organismo a través del sistema nervioso periférico. Este último consta de doce pares de nervios craneales que se extienden desde el cerebro y el tronco cerebral; un grupo de nervios que parten de la médula espinal y que se ramifican por todo el organismo; y el sistema nervioso autónomo, el cual regula las funciones vitales inconscientes, como la actividad de las glándulas, del músculo cardiaco y del músculo liso (músculo involuntario de la piel, vasos sanguíneos y otros órganos internos).

1.- CEREBRO:

El cerebro o telencéfalo se origina durante el desarrollo a partir del prosencéfalo o cerebro anterior. El cerebro está formado principalmente por los hemisferios cerebrales (corteza cerebral y ganglios basales). Los hemisferios cerebrales ocupan la mayor parte del cerebro humano y suponen cerca del 85% del peso del encéfalo. Su gran superficie y su complejo desarrollo justifican el nivel superior de inteligencia de los seres humanos si se compara con el de otros animales. Una fisura longitudinal los divide en hemisferio derecho y hemisferio izquierdo, que son simétricos, como una imagen vista en un espejo. El cuerpo calloso es un conglomerado de fibras nerviosas blancas que conectan estos dos hemisferios y transfieren información de uno a otro.

La corteza cerebral presenta una capa superficial denominada sustancia gris, de unos 2 o 3 mm de espesor, formada por capas de células amielínicas (sin vaina de mielina que las recubra) que envuelven una sustancia interior de fibras mielínicas (con vaina blanca) denominada sustancia blanca. Las fibras mielínicas unen la corteza cerebral con otras partes del cerebro: la parte anterior del cerebro con la posterior, las diferentes zonas de la misma cara de la corteza cerebral y un lado del cerebro con el otro.

Los hemisferios cerebrales están divididos por una serie de cisuras en cinco lóbulos. Cuatro de los lóbulos se denominan como los huesos del cráneo que los cubren: frontal, parietal, temporal y occipital. El quinto lóbulo, la ínsula, no es visible desde el exterior y está localizado en el fondo de la cisura de Silvio. Los lóbulos frontal y parietal están situados delante y detrás, respectivamente, de la cisura de Rolando; la cisura parieto-occipital separa el lóbulo parietal del occipital; y el lóbulo temporal se encuentra por debajo de la cisura de Silvio.

2.- DIENCEFALO:

El diencéfalo se localiza entre el tronco encefálico y el cerebro y comprende el tálamo y el hipotálamo.

2.1.- TALAMO.

Esta parte del diencéfalo consiste en dos masas esféricas de tejido gris, situadas dentro de la zona media del cerebro, entre los dos hemisferios cerebrales. El tálamo es la principal estación de relevo de las señales sensoriales que se dirigen a la corteza cerebral. Todas las entradas sensoriales al cerebro, excepto las olfativas, se asocian con núcleos individuales (grupos de células nerviosas) del tálamo.

2.2.- HIPOTALAMO.

El hipotálamo está situado debajo del tálamo en la línea media en la base del cerebro. Está formado por distintas áreas y núcleos. El hipotálamo regula o está relacionado de forma directa con el control de muchas de las actividades vitales del organismo y dirige otras necesarias para sobrevivir: comer, beber, regulación de la temperatura, dormir, comportamiento afectivo y actividad sexual. También controla funciones viscerales a través del sistema nervioso autónomo, interactúa junto con la hipófisis y actúa en coordinación con la formación reticular.

3.- CEREBELO:

El cerebelo (metencéfalo) se encuentra en la parte posterior del cráneo, por debajo de los hemisferios cerebrales. Al igual que la corteza cerebral, está compuesto de sustancia gris con células amielínicas en la parte exterior y de sustancia blanca con células mielínicas en el interior. Consta de dos hemisferios (hemisferios cerebelosos), con numerosas circunvoluciones, conectados por fibras blancas que constituyen el vermis. Tres bandas de fibras denominadas pedúnculos cerebelosos conectan el cerebelo con el tronco cerebral. El cerebelo se une con el mesencéfalo por los pedúnculos superiores, con el puente de Varolio o protuberancia anular por los pedúnculos medios y con el bulbo raquídeo por los pedúnculos inferiores.

El cerebelo resulta esencial para coordinar los movimientos del cuerpo. Es un centro reflejo que actúa en la coordinación y el mantenimiento del equilibrio. El tono del músculo voluntario, como el relacionado con la postura y con el equilibrio, también es controlado por esta parte del encéfalo. Así, toda actividad motora, desde jugar al fútbol hasta tocar el violín, depende del cerebelo.

4.- TRONCO CEREBRAL:

El tronco cerebral está dividido en varios componentes, que se describen a continuación.

4.1.- CEREBRO MEDIO O MESENCEFALO.

Estructura del tronco cerebral

El tronco cerebral, del que se muestra aquí un corte transversal coloreado, es la parte más inferior del cerebro. Sirve de camino para las señales que viajan entre el cerebro y la médula espinal y es también la sede de funciones vitales y básicas como la respiración, la presión sanguínea o el ritmo cardiaco, y de actos reflejos como el movimiento ocular y el vómito. El tronco cerebral tiene tres partes principales: el bulbo raquídeo o médula oblongada, el puente de Varolio o protuberancia anular y el cerebro medio o mesencéfalo. Un canal recorre en el plano longitudinal estas estructuras transportando fluido cerebroespinal. También distribuida por toda su longitud, hay una red de células, conocidas como formación reticular, que gobierna los estados de alerta.

El mesencéfalo se compone de tres partes. La primera consiste en los pedúnculos cerebrales, sistemas de fibras que conducen los impulsos hacia y desde la corteza cerebral. La segunda la forman los tubérculos cuadrigéminos, cuatro cuerpos a los que llega información visual (dos engrosamientos superiores) y auditiva (dos engrosamientos inferiores). La tercera parte es el canal central, denominado acueducto de Silvio, alrededor del cual se localiza la materia gris. La sustancia negra también aparece en el mesencéfalo, aunque no es exclusiva de él. Contiene células que secretan dopamina y se cree que está implicada en la experiencia del dolor y quizá, en estados de dependencia. Los núcleos de los pares de nervios craneales tercero y cuarto (III y IV) también se sitúan en el mesencéfalo.

4.2.- PROTUBERANCIA ANULAR O PUENTE DE VAROLIO.

Situado entre la médula espinal y el mesencéfalo, esta protuberancia está localizada por delante del cerebelo. Consiste en fibras nerviosas blancas transversales y longitudinales entrelazadas, que forman una red compleja unida al cerebelo por los pedúnculos cerebelosos medios. Este sistema intrincado de fibras conecta el bulbo raquídeo con los hemisferios cerebrales. En la protuberancia se localizan los núcleos para el quinto, sexto, séptimo y octavo (V, VI, VII y VIII) pares de nervios craneales.

4.3.- BULBO RAQUIDEO (MEDULLA OBLONGATA).

Situado entre la médula espinal y la protuberancia, el bulbo raquídeo (mielencéfalo) constituye en realidad una extensión, en forma de pirámide, de la médula espinal. El origen de la formación reticular, importante red de células nerviosas, es parte primordial de esta estructura. El núcleo del noveno, décimo, undécimo y duodécimo (IX, X, XI y XII) pares de nervios craneales se encuentra también en el bulbo raquídeo. Los impulsos entre la médula espinal y el cerebro se conducen a través del bulbo raquídeo por vías principales de fibras nerviosas tanto ascendentes como descendentes. También se localizan los centros de control de las funciones cardiacas, vasoconstrictoras y respiratorias, así como otras actividades reflejas, incluido el vómito. Las lesiones de estas estructuras ocasionan la muerte inmediata.

FORMACION RETICULAR:

El tronco encefálico contiene también la formación reticular: un grupo de áreas de sustancia gris entremezcladas con cordones de sustancia blanca que discurren a lo largo del bulbo raquídeo, la protuberancia y el mesencéfalo y que también alcanzan la médula espinal y el diencéfalo. La formación reticular desempeña funciones motoras y sensoriales; entre otras, controla la respiración, la función cardiovascular, la digestión y mantiene los patrones del sueño y la conciencia y el despertar.

SISTEMA LIMBICO:

Formado por partes del tálamo, hipotálamo, hipocampo, amígdala, cuerpo calloso, septum y mesencéfalo, constituye una unidad funcional del encéfalo. Estas estructuras están integradas en un mismo sistema que da como resultado el control de las múltiples facetas del comportamiento, incluyendo las emociones, en situaciones de crisis, la memoria y los recuerdos.

NERVIOS CRANEALES:

Nervios craneales

Mientras que la mayoría de los nervios mayores emergen de la espina dorsal, los 12 pares de nervios craneales se proyectan directamente desde el encéfalo. Todos estos pares de nervios transmiten información motora o sensorial (o ambas); sin embargo, el décimo par, el nervio vago, se relaciona con funciones viscerales como el ritmo cardiaco, la vasoconstricción y la contracción de los músculos lisos que se encuentran en las paredes de la tráquea, del estómago y del intestino.

Hay doce pares de nervios craneales, simétricos entre sí, que salen de la base del encéfalo. Se distribuyen a lo largo de las diferentes estructuras de la cabeza y cuello y se numeran, de adelante hacia atrás, en el mismo orden en el que se originan. Todos contienen fibras sensitivas y motoras, excepto los pares I, II y VIII, que son solo sensitivos. Las fibras motoras controlan movimientos musculares y las sensitivas recogen información del exterior o del interior del organismo.

VASCULARIZACION:

El oxígeno y la glucosa llegan a las células nerviosas por dos pares de arterias craneales. Justo debajo del cuello, cada una de las dos arterias carótidas comunes se divide en una rama externa, la carótida externa que lleva sangre a la parte externa craneal, y una rama interna, la carótida interna, que lleva sangre al polo anterior del encéfalo. Las dos arterias vertebrales, que se unen junto con las dos carótidas internas en la base del encéfalo formando una estructura llamada polígono de Willis, irrigan la parte posterior. Este es un dispositivo que sirve como compensación si se obstruyen algunas de las arterias. El 25% del gasto cardiaco llega a los tejidos cerebrales a partir de una enorme red de arterias cerebrales y cerebelosas.

FUNCIONES DE LA CORTEZA CEREBRAL:

Funciones de los hemisferios cerebrales izquierdo y derecho

Aunque los hemisferios cerebrales tienen una estructura simétrica, con los dos lóbulos que emergen desde el tronco cerebral y con zonas sensoriales y motoras en ambos, ciertas funciones intelectuales son desempeñadas por un único hemisferio. El hemisferio dominante de una persona se suele ocupar del lenguaje y de las operaciones lógicas, mientras que el otro hemisferio controla las emociones y las capacidades artísticas y espaciales. En casi todas las personas diestras y en muchas personas zurdas, el hemisferio dominante es el izquierdo.

Fisiólogos y neurólogos han cartografiado áreas de la corteza cerebral para localizar y definir las regiones responsables de los movimientos motores, procesos sensoriales, la memoria y otras funciones cognitivas.

La corteza se subdivide en distintas áreas funcionales que, en realidad, están interconectadas entre sí. Por ejemplo, el área somatomotora, localizada justo delante de la cisura central, es responsable de todos los movimientos voluntarios de los músculos del cuerpo. Las células nerviosas que controlan el movimiento de los dedos del pie están en la parte superior de la cisura, mientras que los movimientos faciales se controlan desde la parte inferior del girus angularis.

Funciones de la corteza cerebral

Muchas funciones motoras y sensoriales han sido asociadas a zonas específicas de la corteza cerebral, algunas de las cuales se indican aquí. En general, estas áreas aparecen en ambos hemisferios cerebrales y están al servicio del lado opuesto del cuerpo. Las áreas de asociación no están bien definidas y se localizan sobre todo en la parte frontal de la corteza. Están involucradas en funciones del pensamiento y emocionales y relacionan los estímulos recibidos desde los diferentes sentidos. Las áreas del lenguaje son una excepción: tanto el área de Wernicke, que está relacionada con la comprensión del lenguaje hablado, como el área de Broca, que gobierna la producción del habla, han sido localizadas de forma precisa en la corteza.

Justo detrás de la cisura central está el área somatosensorial que recibe impulsos desde la superficie cutánea, así como de las estructuras que se encuentran debajo de la piel. Sensaciones como el tacto y el gusto también se procesan aquí. Una vez más las células nerviosas que reciben la sensibilidad de los dedos del pie están en la parte alta de esta región, mientras las provenientes de la cara están en la base. La zona de la corteza relacionada con la audición, el área auditiva, se encuentra en la parte superior del lóbulo temporal; el área relacionada con la vista, la corteza visual, se localiza en la parte posterior o lóbulo occipital, y el área olfativa se localiza en la parte anterior, en la parte interna del lóbulo temporal. Una sola zona controla el lenguaje, el área de Broca, situada justo debajo del área motora; es la responsable de los movimientos musculares de la región faríngea y de la boca implicados en el habla. El entendimiento del lenguaje, hablado y escrito, es delegado a regiones situadas entre el área auditiva y el área visual.

Una parte importante de la corteza cerebral, el área frontal, interviene en el conocimiento, la inteligencia y la memoria. Por ejemplo, después de un estímulo sensorial como la visualización de un nuevo objeto, este es archivado y almacenado por la memoria durante un corto periodo, o a veces de forma más permanente en determinadas células nerviosas del cerebro. Cuando el objeto se ve de nuevo, la memoria se activa y el objeto es reconocido. El que un anciano pueda recordar hechos de la infancia es un ejemplo de la extraordinaria capacidad de almacenamiento del cerebro. Los neurólogos estudian hoy el mecanismo celular por el cual las células nerviosas almacenan la memoria. Una teoría para explicarlo se basa en los cambios que ocurren en el ácido ribonucleico (ARN) de las células de la corteza, que codifican señales en forma de material proteico. Otra teoría es que los neuropéptidos (sustancias proteicas que actúan como mensajeros, de igual forma que las hormonas) del cerebro se activan cuando un suceso se almacena en forma de memoria. Una tercera teoría supone que neurotransmisores (sustancias químicas que actúan en la transmisión de impulsos nerviosos entre dos o más neuronas) se modifican cuando se almacenan impulsos.

Los dos hemisferios cerebrales suelen funcionar en conjunto, pero cada hemisferio está muy especializado. Una característica notable es que el entorno que rodea a una persona se representa de forma especular en la corteza. Una sensación en el lado derecho del cuerpo, por ejemplo, se percibe en el área somatosensorial izquierda. De forma similar, el movimiento del brazo derecho determina la activación de neuronas de la corteza motora izquierda. En casi todos los individuos el hemisferio izquierdo es dominante; esto explica que la mayoría de la gente sea diestra (véase Ambidextro). Si parte del lóbulo temporal izquierdo se lesiona, la comprensión del habla se deteriora. Si la parte derecha del lóbulo temporal se daña, los objetos no pueden reconocerse. En general, la lesión de un lado del cerebro causa la pérdida de todas las funciones sensitivas y motoras del lado opuesto del cuerpo.

QUIMICA Y FISIOLOGIA:

Los procesos metabólicos encefálicos dependen de un suministro continuo de glucosa y oxígeno a cargo de la sangre arterial. Las células nerviosas requieren grandes cantidades de estas sustancias para su continua actividad fisiológica, día y noche. Muchas sustancias que circulan en la sangre no llegan al encéfalo porque pequeños elementos actúan como filtro molecular e iónico; se cree que las uniones entre las células de los capilares cerebrales son las responsables de este descenso de permeabilidad. Este sistema de filtración recibe el nombre de barrera hematoencefálica. Muchos componentes biológicos de alto peso molecular, como las hormonas de la corteza adrenal o los aminoácidos, no pasan a través de esta barrera; las pequeñas moléculas tampoco atraviesan la barrera debido a su polaridad (carga iónica). De esta manera, la composición química del encéfalo se mantiene en equilibrio y bien protegida de los cambios químicos relacionados con la alimentación.

Las células nerviosas o de glía de las distintas partes del encéfalo se clasifican no solo por su forma (piramidal o en estrella), sino también por su estructura química. Cada una de las neuronas contiene un neurotransmisor diferente que interviene en la interrelación de unas células con otras. Por ejemplo, la serotonina se encuentra en muchas células nerviosas del tronco cerebral; en conjunto, estas neuronas constituyen la vía serotoninérgica. La noradrenalina se encuentra en otras células nerviosas y el conjunto de ellas constituye la vía noradrenérgica. De forma similar, las células nerviosas que contienen acetilcolina constituyen la vía colinérgica. Investigaciones recientes constatan que la temperatura corporal, la dieta y quizá el sueño dependan de forma significativa del equilibrio entre estas vías.

Ciertas enfermedades psiquiátricas pueden estar causadas por alteraciones en la producción y en la actividad celular de los neurotransmisores del sistema límbico. La acción fundamental de un tranquilizante o de otra droga que actúe sobre el cerebro es restaurar el equilibrio entre los distintos neurotransmisores o la alteración de un determinado sistema neurotransmisor. Los aminoácidos y otras sustancias hormonales encontradas en las células nerviosas, por ejemplo neuropéptidos, desempeñan también un papel importante en la regulación de la actividad de las células nerviosas y en la transmisión de sus impulsos.

Miles de neurólogos se dedican al estudio de estos sistemas químicos. Comprender el funcionamiento del cerebro, desde su fisiología básica a su papel en el aprendizaje y en las emociones, proporciona unos conocimientos cada vez mayores de la química cerebral en condiciones tanto normales como anormales.

ENFERMEDADES:

Lesiones físicas o desequilibrios químicos complejos pueden producir diferentes tipos de alteraciones y lesiones encefálicas graves.

A) LESIONES ENCEFALICAS: Después de un golpe en la cabeza, una persona puede quedar aturdida o conmocionada o permanecer inconsciente por un momento. Esta lesión recibe el nombre de contusión y no suele provocar un daño permanente. Si el golpe es más fuerte y se produce una hemorragia o un edema, puede dar lugar a un fuerte dolor de cabeza, vértigos, parálisis, convulsiones o una ceguera temporal, según el área afectada. En el encéfalo, una infección bacteriana (véase Encefalitis) o en las membranas externas (véase Meningitis), tumefacción (véase Edema), o un crecimiento anormal del tejido cerebral sano (véase Tumor) pueden ocasionar un incremento de la presión intracraneal originando un problema muy serio. Aunque hay excepciones, un tumor localizado cerca de la superficie puede normalmente extirparse mediante cirugía, mientras que uno situado a más profundidad, solo es posible tratarlo por radiación o crioterapia.

Una lesión que afecte al hipotálamo puede ocasionar síntomas muy diversos: pérdida de apetito (anorexia) con gran pérdida de peso; incremento del apetito que conduce a la obesidad; sed muy intensa con pérdida excesiva de líquido por la orina (véase Diabetes insípida); fallo en el control de la temperatura corporal que produce tanto una bajada de la temperatura (véase Hipotermia) como una subida de la misma (véase Fiebre) y un estado de mayor sensibilidad, así como explosiones incontroladas de ira. Si el mecanismo hipotálamo-hipófisis sufre una lesión (véase Sistema endocrino), otras funciones vitales del organismo pueden resultar alteradas; entre los efectos posibles se incluyen alteraciones de la función sexual normal y de las actividades metabólicas y cardiovasculares.

B) LESIONES DEL TRONCO CEREBRAL: Una lesión en el cerebro medio o mesencéfalo, la protuberancia anular o el bulbo raquídeo tiene peor pronóstico. La extensión y el lugar del daño suelen determinar las posibilidades de una recuperación.

C) APOPLEJIA: Una apoplejía se produce cuando un tronco arterial principal del encéfalo se obstruye. Esta obstrucción puede estar causada por un coágulo de sangre (trombo), la constricción de un vaso sanguíneo o una ruptura del vaso acompañada de hemorragia. Una expansión de la pared del vaso sanguíneo, llamada aneurisma, puede ceder y reventar durante un incidente, por ejemplo, de presión sanguínea alta. Cuando se interrumpe el suministro de sangre a una pequeña parte del encéfalo (isquemia), las células de esa zona mueren (necrosis o infarto) y la función del área se pierde. La parálisis de un lado del cuerpo (hemiplejia), acompañada de una pérdida sensorial, ocurre en la parte opuesta al hemisferio cerebral afectado por la apoplejía. Un cirujano puede, a veces, extraer un coágulo de sangre de una arteria ocluida o hacer un bypass con un vaso sanguíneo artificial. Un anticoagulante consigue, a veces, disolver el coágulo y un vasodilatador facilitará su paso por el vaso sanguíneo. La fisioterapia ayuda con frecuencia a pacientes apopléjicos a recobrar muchas de las funciones perdidas.

D) OTRAS ENFERMEDADES IMPORTANTES: Existen otras enfermedades que pueden aparecer como consecuencia de una lesión local, de alguna sustancia química u otros productos tóxicos como el alcohol o el plomo, de una infección bacteriana o de un defecto anatómico congénito. La enfermedad de Parkinson aparece en los adultos, es una enfermedad degenerativa y se caracteriza por lesiones en áreas cerebrales que coordinan los movimientos. En estas zonas disminuye el número de células nerviosas y, por tanto, la cantidad de neurotransmisores (dopamina) que producen. Debido a ello aparecen temblores, rigidez muscular y escasez de movimientos. La parálisis cerebral suele tener un origen congénito y es el resultado de la falta de desarrollo o la degeneración de las vías motoras; los miembros se vuelven rígidos y los movimientos son espasmódicos y poco coordinados.

La epilepsia puede originarse por un daño directo en el cerebro durante el nacimiento o por un fallo metabólico del mismo. Cuando se produce una convulsión o una crisis tipo gran mal, la persona pierde la consciencia mientras sufre rigidez y espasmos musculares. Otras veces se sufren crisis menos graves, como la llamada pequeño mal u otras crisis parciales. Estos ataques pueden registrarse en un electroencefalograma o EEG, mediante la colocación de electrodos sobre la piel; estos registran un patrón eléctrico específico que refleja la actividad eléctrica de las células nerviosas cerebrales.

E) EVOUCION DE LAS ENFERMEDADES: La mayor parte de las formas de vida primitiva carecen de cerebro, pero la ameba más simple tiene un sistema sensorial primitivo que le permite evitar estímulos dañinos. El desarrollo del encéfalo en los primates, grupo más evolucionado, en el que se incluyen los seres humanos, ha sufrido un gran proceso de evolución. Sin embargo, todos los vertebrados (animales con columna vertebral), incluidos peces, reptiles y aves, tienen un encéfalo formado por las mismas tres subdivisiones básicas encontradas en el encéfalo humano: cerebro anterior o prosencéfalo, medio o mesencéfalo y posterior o romboencéfalo.

En los vertebrados más primitivos el encéfalo es alargado y estrecho, con un tracto olfatorio muy desarrollado. En los pájaros, los lóbulos olfatorios son más pequeños, pero los lóbulos ópticos son muy grandes y están muy desarrollados. A medida que se asciende en la escala evolutiva, los hemisferios cerebrales aumentan su tamaño, se cubren los tractos olfatorios y se repliegan en recovecos y fisuras. Ciertas estructuras encefálicas de los animales más primitivos como el cerebelo (que interviene en el equilibrio) y el bulbo raquídeo (que controla la respiración y la presión sanguínea) tienen funciones casi idénticas a las que desempeñan en el ser humano.

El tamaño del cerebro no determina el grado de inteligencia; un deficiente psíquico puede tener un cerebro de mayor tamaño que el de un genio. Se cree que el grado de inteligencia está determinado por el número y tipo de neuronas en funcionamiento y el modo en que están conectadas unas con otras.


MEDULA ESPINAL.

Médula espinal, es la parte del sistema nervioso contenida dentro del canal vertebral o neural. En el ser humano adulto, se extiende desde la base del cráneo hasta la segunda vértebra lumbar. Por debajo de esta zona se empieza a reducir hasta formar una especie de cordón llamado filum terminal, delgado y fibroso y que contiene poca materia nerviosa. Por encima del foramen magnum, en la base del cráneo, está situado el bulbo raquídeo. Igual que el cerebro, la médula está encerrada en una funda triple de membranas, las meninges, y está dividida de forma parcial en dos mitades laterales por un surco medio hacia la parte dorsal y por una hendidura ventral hacia la parte anterior; de cada lado de la médula surgen 31 pares de nervios espinales, cada uno de los cuales tiene una raíz anterior y otra posterior. Los últimos pares de nervios espinales forman la llamada cola de caballo al descender por el último tramo de la columna vertebral.

La médula espinal transmite los impulsos ascendentes hacia el cerebro y los impulsos descendentes desde el cerebro hacia el resto del cuerpo. Transmite la información que le llega desde los nervios periféricos procedentes de distintas regiones corporales, hasta los centros superiores. El propio cerebro actúa sobre la médula enviando impulsos. La médula espinal también transmite impulsos a los músculos, los vasos sanguíneos y las glándulas a través de los nervios que salen de ella, bien en respuesta a un estímulo recibido, o bien en respuesta a señales procedentes de centros superiores del sistema nervioso central.

Médula espinal: estructura anatómica

La médula espinal está contenida dentro del canal vertebral y, junto con el encéfalo, constituye el sistema nervioso central. En su interior, la sustancia gris tiene forma de H y está constituida por los cuerpos celulares de las neuronas medulares; la sustancia blanca, en cambio, está compuesta por fibras nerviosas.

SISTEMA NERVIOSO VEGETATIVO.

Sistema nervioso vegetativo o Sistema nervioso autónomo, en anatomía vertebrada, una de las principales divisiones del sistema nervioso. Envía impulsos al corazón, músculos estriados, musculatura lisa y glándulas. El sistema vegetativo controla la acción de las glándulas; las funciones de los sistemas respiratorio, circulatorio, digestivo, y urogenital y los músculos involuntarios de dichos sistemas y de la piel. Controlado por los centros nerviosos en la parte inferior del cerebro tiene también un efecto recíproco sobre las secreciones internas; está controlado en cierto grado por las hormonas y a su vez ejerce cierto control en la producción hormonal.

El sistema nervioso vegetativo se compone de dos divisiones antagónicas. El simpático (o toracolumbar) estimula el corazón, dilata los bronquios, contrae las arterias, e inhibe el aparato digestivo, preparando el organismo para la actividad física. El parasimpático (o craneosacro) tiene los efectos opuestos y prepara el organismo para la alimentación, la digestión y el reposo. El simpático consiste en una cadena de ganglios (grupo de neuronas) interconectados a cada lado de la columna vertebral, que envía fibras nerviosas a varios ganglios más grandes, como el ganglio celíaco. Estos, a su vez, dan origen a nervios que se dirigen a los órganos internos. Los ganglios de las cadenas simpáticas conectan con el sistema nervioso central a través de finas ramificaciones que unen cada ganglio con la médula espinal. Las fibras del parasimpático salen del cerebro y, junto con los pares craneales, en especial los nervios espinal y vago, pasan a los ganglios y plexos (red de nervios) situados dentro de varios órganos. La parte inferior del cuerpo está inervada por fibras que surgen del segmento inferior (sacro) de la médula espinal y pasan al ganglio pélvico, del cual parten los nervios hacia el recto, la vejiga y los órganos genitales.

Sistema nervioso autónomo o vegetativo

El sistema nervioso autónomo dirige las actividades corporales sobre las que el individuo no tiene un control consciente, como la respiración o la digestión. Consta de dos partes: el sistema simpático y el parasimpático.



PREGUNTAS RESUELTAS.


1.- A la porción del sistema nervioso central donde se localiza los centros nerviosos moderadores del corazón y de la respiración se denomina:

a) cerebro b) medula espinal c) hipotálamo d) bulbo raquídeo e) nervio raquídeo.

Rpta: d

El bulbo raquídeo: es la continuación de la medula que se hace más gruesa al entrar en el cráneo. Regula el funcionamiento del corazón y de los músculos respiratorios, además de los movimientos de la masticación, la tos, el estornudo, el vomito…etc. Por eso una lesión en el bulbo produce la muerte instantánea por paro cardio-respiratorio irreversible.

2.- Complete:

En los mamíferos, la……………………. Es la meninge más próxima al cerebro.

a) Piamadre b) duramadre c) aracnoides d) hematoencefálica e) placentaria.

Rpta: a

Piamadre: membrana delgada, adherida al neuroeje, que contiene gran cantidad de pequeños vasos sanguíneos y linfáticos y esta unida íntimamente a la superficie cerebral. En su porción espinal forma tabiques dentados dispuestos en festón, llamados ligamentos dentados. Entre aracnoides y la piamadre se encuentra el espacio subaracnoideo que contiene el liquido cefalorraquídeo y que aparece atravesado por un gran numero de finas trabéculas.


3.-La función que corresponde al sistema nervioso parasimpático es:

a) retardar los movimientos peristálticos b) inhibir la secreción salival c) acelera los latidos del corazón d) dilata las paredes de la vejiga e) contrae las pupilas.

Rpta: e

Sistema nervioso parasimpático: esta formado por pares craneales incluyendo el nervio vago y fibras originadas de nervios sacros de la medula espinal. Por lo tanto, este sistema frecuentemente se denomina la porción del cráneo-sacra del SNA. El sistema parasimpático esta relacionado con todas las respuestas internas asociadas con un estado de relajación, por ejemplo provoca que las pupilas se contraigan, facilita la digestión de los alimentos y disminuye la frecuencia cardiaca.



4.- Para que se constituye el arco reflejo es indispensable la participación de una estructura del sistema nervioso que es:

a) La medula espinal b) el cerebro c) el hipotálamo d) la medula oblongada e) el cerebelo.

Rpta: a

El conjunto de elementos que intervienen en un acto reflejo constituyen el arco reflejo.

El arco reflejo más simple esta constituido por los siguientes elementos:

. Receptor: estructura que recibe los estímulos.

. Neurona sensitiva: capta la información y lleva el mensaje a la medula.

. Interneurona o neurona de asociación: capta la información y lleva el mensaje a la medula.

. Neuronas motoras: llevan el impulso nervioso desde la médula hasta el efector.

. Efector: órgano encargado de efectuar una respuesta.



5.- En un corte histológico de la medula espinal se observa una región central que tiene forma de la letra H denominada:

a) Sustancia gris b) sustancia blanca c) fascículo nervioso d) cordón posterior e) nervio raquídeo.

Rpta: a

En la medula espinal se encuentra la sustancia gris y la sustancia blanca en la parte exterior. La sustancia gris presenta aproximadamente una forma de H, los cuernos o astas posteriores son más delgados que los cuernos o astas anteriores. La medula es un órgano conductor de impulsos sensitivos procedentes de los órganos receptores periféricos hacia el cerebro y de los impulsos motores elaborados en el encéfalo, hacia los órganos efectores 8 músculos y glándulas). Las fibras sensitivas constituyen las vías ascendentes; las motoras las descendientes. También es un centro de elaboración de reflejos.




PREGUNTAS PROPUESTAS:


1.- Las células especializadas del sistema nervioso que perciben los estímulos del medio ambiente y que se encargan de transmitirlo y elaboran una respuesta se denominan:

a) Receptoras b) efectoras c) reguladoras d) conductoras e) transmisoras.

2.- Complete:

En la sinapsis química, el impulso nervioso induce en la célula pre sináptica………………… que produce una respuesta excitatoria o inhibitoria en la célula post sináptica en ………………………….

a)un potencial de acción-una sola dirección b)la liberación de enzimas-una sola dirección c)la liberación de neurotransmisores-una sola dirección d)un potencial de acción-varias direcciones e)la liberación de acetilcolina-varias direcciones.

3.- La velocidad de transmisión del impulso nervioso depende:

a)del recorrido de las fibras nerviosas b)de la longitud de las fibras nerviosas c)del grosor de las fibras nerviosas d)de la envoltura mielinica de las fibras nerviosas e)del numero de las fibras nerviosas.

4.- La hipotonía muscular y la astenia (debilidad muscular) se presentan en un paciente que tiene dañado el:

a) Arquicerebelo b) vestíbulo cerebral c) paleocerebelo d) neocerebelo e) bulbo raquídeo.

5.- Es la encargada de regular los centros nerviosos del hambre y la saciedad, la sed y la temperatura corporal:

a) Cerebelo b) medula espinal c) tálamo d) hipotálamo e) meninges.

6.- El par craneal que permite diferenciar los colores y las formas de los objetos es el:

a) I par b) II par c) III par d) V par e) VI par.

7.- Indique la relación incorrecta:

a) III par craneal – motor ocular común b) II par craneal – óptico c) X par craneal – hipogloso e) XI par craneal – trigémino.

8.- El nervio facial que inerva a los músculos de la expresión facial, y el nervio hipogloso, que permite el movimiento de la lengua corresponden respectivamente al:

a) III y IV par craneal b) V y VI par craneal c) VII y XII par craneal d) VII y XI par craneal.

9.- De las siguientes estructuras nerviosas, la encargada del control del lado derecho del cuerpo y de regular el lenguaje escrito y hablado es el:

a) Hipotálamo b) bulbo raquídeo c) hemisferio izquierdo d) tálamo e) cerebelo.

10.- El “árbol de la vida” se forma a nivel del:

a) Cerebro b) cerebelo c) medula espinal d) mesencéfalo e) diencefalo.





CLAVES:

1.- A 3.- D 5.- D 7.- E 9.- C

2.- C 4.- C 6.- B 8.- C 10.- B